Designing accurate emulators for scientific processes using calibration-driven deep models

The success of machine learning for scientific discovery normally depends on how well the inherent assumptions match the problem in hand. Here, Thiagarajan et al. alleviate this constraint by allowing the change of optimization criterion in a data-driven approach to emulate complex scientific proces...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jayaraman J. Thiagarajan, Bindya Venkatesh, Rushil Anirudh, Peer-Timo Bremer, Jim Gaffney, Gemma Anderson, Brian Spears
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/4e1088a77af74dbeb4fcd4fe665cf79c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The success of machine learning for scientific discovery normally depends on how well the inherent assumptions match the problem in hand. Here, Thiagarajan et al. alleviate this constraint by allowing the change of optimization criterion in a data-driven approach to emulate complex scientific processes.