Designing accurate emulators for scientific processes using calibration-driven deep models

The success of machine learning for scientific discovery normally depends on how well the inherent assumptions match the problem in hand. Here, Thiagarajan et al. alleviate this constraint by allowing the change of optimization criterion in a data-driven approach to emulate complex scientific proces...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jayaraman J. Thiagarajan, Bindya Venkatesh, Rushil Anirudh, Peer-Timo Bremer, Jim Gaffney, Gemma Anderson, Brian Spears
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/4e1088a77af74dbeb4fcd4fe665cf79c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4e1088a77af74dbeb4fcd4fe665cf79c
record_format dspace
spelling oai:doaj.org-article:4e1088a77af74dbeb4fcd4fe665cf79c2021-12-02T14:41:04ZDesigning accurate emulators for scientific processes using calibration-driven deep models10.1038/s41467-020-19448-82041-1723https://doaj.org/article/4e1088a77af74dbeb4fcd4fe665cf79c2020-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19448-8https://doaj.org/toc/2041-1723The success of machine learning for scientific discovery normally depends on how well the inherent assumptions match the problem in hand. Here, Thiagarajan et al. alleviate this constraint by allowing the change of optimization criterion in a data-driven approach to emulate complex scientific processes.Jayaraman J. ThiagarajanBindya VenkateshRushil AnirudhPeer-Timo BremerJim GaffneyGemma AndersonBrian SpearsNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-10 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Jayaraman J. Thiagarajan
Bindya Venkatesh
Rushil Anirudh
Peer-Timo Bremer
Jim Gaffney
Gemma Anderson
Brian Spears
Designing accurate emulators for scientific processes using calibration-driven deep models
description The success of machine learning for scientific discovery normally depends on how well the inherent assumptions match the problem in hand. Here, Thiagarajan et al. alleviate this constraint by allowing the change of optimization criterion in a data-driven approach to emulate complex scientific processes.
format article
author Jayaraman J. Thiagarajan
Bindya Venkatesh
Rushil Anirudh
Peer-Timo Bremer
Jim Gaffney
Gemma Anderson
Brian Spears
author_facet Jayaraman J. Thiagarajan
Bindya Venkatesh
Rushil Anirudh
Peer-Timo Bremer
Jim Gaffney
Gemma Anderson
Brian Spears
author_sort Jayaraman J. Thiagarajan
title Designing accurate emulators for scientific processes using calibration-driven deep models
title_short Designing accurate emulators for scientific processes using calibration-driven deep models
title_full Designing accurate emulators for scientific processes using calibration-driven deep models
title_fullStr Designing accurate emulators for scientific processes using calibration-driven deep models
title_full_unstemmed Designing accurate emulators for scientific processes using calibration-driven deep models
title_sort designing accurate emulators for scientific processes using calibration-driven deep models
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/4e1088a77af74dbeb4fcd4fe665cf79c
work_keys_str_mv AT jayaramanjthiagarajan designingaccurateemulatorsforscientificprocessesusingcalibrationdrivendeepmodels
AT bindyavenkatesh designingaccurateemulatorsforscientificprocessesusingcalibrationdrivendeepmodels
AT rushilanirudh designingaccurateemulatorsforscientificprocessesusingcalibrationdrivendeepmodels
AT peertimobremer designingaccurateemulatorsforscientificprocessesusingcalibrationdrivendeepmodels
AT jimgaffney designingaccurateemulatorsforscientificprocessesusingcalibrationdrivendeepmodels
AT gemmaanderson designingaccurateemulatorsforscientificprocessesusingcalibrationdrivendeepmodels
AT brianspears designingaccurateemulatorsforscientificprocessesusingcalibrationdrivendeepmodels
_version_ 1718390050522136576