Designing accurate emulators for scientific processes using calibration-driven deep models
The success of machine learning for scientific discovery normally depends on how well the inherent assumptions match the problem in hand. Here, Thiagarajan et al. alleviate this constraint by allowing the change of optimization criterion in a data-driven approach to emulate complex scientific proces...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4e1088a77af74dbeb4fcd4fe665cf79c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4e1088a77af74dbeb4fcd4fe665cf79c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4e1088a77af74dbeb4fcd4fe665cf79c2021-12-02T14:41:04ZDesigning accurate emulators for scientific processes using calibration-driven deep models10.1038/s41467-020-19448-82041-1723https://doaj.org/article/4e1088a77af74dbeb4fcd4fe665cf79c2020-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19448-8https://doaj.org/toc/2041-1723The success of machine learning for scientific discovery normally depends on how well the inherent assumptions match the problem in hand. Here, Thiagarajan et al. alleviate this constraint by allowing the change of optimization criterion in a data-driven approach to emulate complex scientific processes.Jayaraman J. ThiagarajanBindya VenkateshRushil AnirudhPeer-Timo BremerJim GaffneyGemma AndersonBrian SpearsNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-10 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Jayaraman J. Thiagarajan Bindya Venkatesh Rushil Anirudh Peer-Timo Bremer Jim Gaffney Gemma Anderson Brian Spears Designing accurate emulators for scientific processes using calibration-driven deep models |
description |
The success of machine learning for scientific discovery normally depends on how well the inherent assumptions match the problem in hand. Here, Thiagarajan et al. alleviate this constraint by allowing the change of optimization criterion in a data-driven approach to emulate complex scientific processes. |
format |
article |
author |
Jayaraman J. Thiagarajan Bindya Venkatesh Rushil Anirudh Peer-Timo Bremer Jim Gaffney Gemma Anderson Brian Spears |
author_facet |
Jayaraman J. Thiagarajan Bindya Venkatesh Rushil Anirudh Peer-Timo Bremer Jim Gaffney Gemma Anderson Brian Spears |
author_sort |
Jayaraman J. Thiagarajan |
title |
Designing accurate emulators for scientific processes using calibration-driven deep models |
title_short |
Designing accurate emulators for scientific processes using calibration-driven deep models |
title_full |
Designing accurate emulators for scientific processes using calibration-driven deep models |
title_fullStr |
Designing accurate emulators for scientific processes using calibration-driven deep models |
title_full_unstemmed |
Designing accurate emulators for scientific processes using calibration-driven deep models |
title_sort |
designing accurate emulators for scientific processes using calibration-driven deep models |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/4e1088a77af74dbeb4fcd4fe665cf79c |
work_keys_str_mv |
AT jayaramanjthiagarajan designingaccurateemulatorsforscientificprocessesusingcalibrationdrivendeepmodels AT bindyavenkatesh designingaccurateemulatorsforscientificprocessesusingcalibrationdrivendeepmodels AT rushilanirudh designingaccurateemulatorsforscientificprocessesusingcalibrationdrivendeepmodels AT peertimobremer designingaccurateemulatorsforscientificprocessesusingcalibrationdrivendeepmodels AT jimgaffney designingaccurateemulatorsforscientificprocessesusingcalibrationdrivendeepmodels AT gemmaanderson designingaccurateemulatorsforscientificprocessesusingcalibrationdrivendeepmodels AT brianspears designingaccurateemulatorsforscientificprocessesusingcalibrationdrivendeepmodels |
_version_ |
1718390050522136576 |