Designing accurate emulators for scientific processes using calibration-driven deep models
The success of machine learning for scientific discovery normally depends on how well the inherent assumptions match the problem in hand. Here, Thiagarajan et al. alleviate this constraint by allowing the change of optimization criterion in a data-driven approach to emulate complex scientific proces...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4e1088a77af74dbeb4fcd4fe665cf79c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sea el primero en dejar un comentario!