Increased long-term health risks attributable to select volatile organic compounds in residential indoor air in southeast Louisiana

Abstract Volatile organic compounds (VOCs) represent a broad class of chemicals, many of which can be found in indoor air including residential indoor air. VOCs derive from a variety of sources including cleaning products, cooking practices, fragrances and fresheners, hobbies and at-home work behavi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jeffrey K. Wickliffe, Thomas H. Stock, Jessi L. Howard, Ericka Frahm, Bridget R. Simon-Friedt, Krista Montgomery, Mark J. Wilson, Maureen Y. Lichtveld, Emily Harville
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/4e140c35942c448ab3afa75ffceee7fa
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Volatile organic compounds (VOCs) represent a broad class of chemicals, many of which can be found in indoor air including residential indoor air. VOCs derive from a variety of sources including cleaning products, cooking practices, fragrances and fresheners, hobbies and at-home work behaviors. This study examined residential indoor air in homes (n = 99) in southeast Louisiana using passive organic vapor monitors and gas chromatography/mass spectrometry to determine if select VOCs were present, at what concentrations, and if those posed any potential long-term health risks. Twenty-nine VOCs were targeted in cross-sectional analyses using a 48-h sampling period. Twelve VOCs were detected in most of the homes sampled including xylenes, pinenes, benzene, toluene, ethylbenzene, hexane, pentane, chloroform, and carbon tetrachloride. Concentrations of alkanes and BTEX compounds were highly correlated (Spearman’s r > 0.63, p < 0.0001). Using health risk measures (i.e. reference concentrations [RfCs] and inhalation unit risks [IURs]) available from the USEPA non-cancer risk assessments and cancer risk assessments were developed for some of these VOCs. Alkanes and BTEX compounds likely come from the same indoor source(s). Using existing health standards published by the USEPA, no unacceptable non-cancer risks were evident except under extremely high concentrations. Lifetime cancer risks, on the other hand, may well be considered unacceptable for chloroform and benzene (upper IUR) and for the combination of chloroform, benzene, and carbon tetrachloride. These exceeded a 1 in 10,000 cancer risk threshold in 35–50% of our simulations. Further study of residential indoor air in low-income women’s homes in this area is needed. Including a larger number of VOCs may reveal yet more potential health risks.