Hierarchical progressive learning of cell identities in single-cell data
Classification methods for scRNA-seq data are limited in their ability to learn from multiple datasets simultaneously. Here the authors present scHPL, a hierarchical progressive learning method that automatically finds relationships between cell populations across multiple datasets and constructs a...
Guardado en:
Autores principales: | Lieke Michielsen, Marcel J. T. Reinders, Ahmed Mahfouz |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4e15acbcd00048f2abe98c564cc7ece7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types
por: Vincent van Unen, et al.
Publicado: (2017) -
Fast and precise single-cell data analysis using a hierarchical autoencoder
por: Duc Tran, et al.
Publicado: (2021) -
Parallel analysis of tri-molecular biosynthesis with cell identity and function in single cells
por: Samuel C. Kimmey, et al.
Publicado: (2019) -
A geometric approach to characterize the functional identity of single cells
por: Shahin Mohammadi, et al.
Publicado: (2018) -
Hierarchical Concept Learning by Fuzzy Semantic Cells
por: Linna Zhu, et al.
Publicado: (2021)