Surface Waves Analysis of Efficient Underwater Radio-Based Wireless Link

The domain of underwater wireless communication (UWC) link is gaining much attention due to an increase in various underwater activities such as offshore hydrocarbon exploration, underwater unmanned vehicles (UUV), and military practices. Increased bandwidth and a reliable data link are mainly requi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Muhammad Rauf, Atif Jamil, Muhammad Dawood Idrees, Arsalan Ansari, Abdul Sami
Formato: article
Lenguaje:EN
Publicado: Hindawi Limited 2021
Materias:
Acceso en línea:https://doaj.org/article/4e1893821afe40439977e0d6d45d4a9e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4e1893821afe40439977e0d6d45d4a9e
record_format dspace
spelling oai:doaj.org-article:4e1893821afe40439977e0d6d45d4a9e2021-11-15T01:19:47ZSurface Waves Analysis of Efficient Underwater Radio-Based Wireless Link1563-514710.1155/2021/4186036https://doaj.org/article/4e1893821afe40439977e0d6d45d4a9e2021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/4186036https://doaj.org/toc/1563-5147The domain of underwater wireless communication (UWC) link is gaining much attention due to an increase in various underwater activities such as offshore hydrocarbon exploration, underwater unmanned vehicles (UUV), and military practices. Increased bandwidth and a reliable data link are mainly required for such activities. Both requirements of the domain are heavily affected by the highly conductive property of the seawater. This paper demonstrates the performance evaluation of radiofrequency-UWC, focusing on surface wave analysis, to propose a reliable solution for offshore activities. A constructive interference scheme can be useful due to the sharp difference in the properties of the two mediums (air and seawater). To that end, an experimental setup is created, and a corresponding finite element method (FEM) based simulation of the radio-based wireless link is run. This is because it has higher bandwidth and speed than acoustic and optical approaches. A conduction current mechanism transmits and receives data in a synthetic water tank containing a prepared conductive media (saltwater). The study of changing depths of transmitter-receiver nodes in saltwater shows that surface waves cause significant noise reception in shallow water (less than dipole length, below water level). During a series of experiments in the tank, the lowest bit error rate (BER) is observed only when the node’s submerged height was greater than dipole length. As a result, it is meant to provide a genuine data channel model. The discovery and analysis will aid in the development of a dependable underwater data link, with applications including short-range diver-to-diver communication, and UUV capability.Muhammad RaufAtif JamilMuhammad Dawood IdreesArsalan AnsariAbdul SamiHindawi LimitedarticleEngineering (General). Civil engineering (General)TA1-2040MathematicsQA1-939ENMathematical Problems in Engineering, Vol 2021 (2021)
institution DOAJ
collection DOAJ
language EN
topic Engineering (General). Civil engineering (General)
TA1-2040
Mathematics
QA1-939
spellingShingle Engineering (General). Civil engineering (General)
TA1-2040
Mathematics
QA1-939
Muhammad Rauf
Atif Jamil
Muhammad Dawood Idrees
Arsalan Ansari
Abdul Sami
Surface Waves Analysis of Efficient Underwater Radio-Based Wireless Link
description The domain of underwater wireless communication (UWC) link is gaining much attention due to an increase in various underwater activities such as offshore hydrocarbon exploration, underwater unmanned vehicles (UUV), and military practices. Increased bandwidth and a reliable data link are mainly required for such activities. Both requirements of the domain are heavily affected by the highly conductive property of the seawater. This paper demonstrates the performance evaluation of radiofrequency-UWC, focusing on surface wave analysis, to propose a reliable solution for offshore activities. A constructive interference scheme can be useful due to the sharp difference in the properties of the two mediums (air and seawater). To that end, an experimental setup is created, and a corresponding finite element method (FEM) based simulation of the radio-based wireless link is run. This is because it has higher bandwidth and speed than acoustic and optical approaches. A conduction current mechanism transmits and receives data in a synthetic water tank containing a prepared conductive media (saltwater). The study of changing depths of transmitter-receiver nodes in saltwater shows that surface waves cause significant noise reception in shallow water (less than dipole length, below water level). During a series of experiments in the tank, the lowest bit error rate (BER) is observed only when the node’s submerged height was greater than dipole length. As a result, it is meant to provide a genuine data channel model. The discovery and analysis will aid in the development of a dependable underwater data link, with applications including short-range diver-to-diver communication, and UUV capability.
format article
author Muhammad Rauf
Atif Jamil
Muhammad Dawood Idrees
Arsalan Ansari
Abdul Sami
author_facet Muhammad Rauf
Atif Jamil
Muhammad Dawood Idrees
Arsalan Ansari
Abdul Sami
author_sort Muhammad Rauf
title Surface Waves Analysis of Efficient Underwater Radio-Based Wireless Link
title_short Surface Waves Analysis of Efficient Underwater Radio-Based Wireless Link
title_full Surface Waves Analysis of Efficient Underwater Radio-Based Wireless Link
title_fullStr Surface Waves Analysis of Efficient Underwater Radio-Based Wireless Link
title_full_unstemmed Surface Waves Analysis of Efficient Underwater Radio-Based Wireless Link
title_sort surface waves analysis of efficient underwater radio-based wireless link
publisher Hindawi Limited
publishDate 2021
url https://doaj.org/article/4e1893821afe40439977e0d6d45d4a9e
work_keys_str_mv AT muhammadrauf surfacewavesanalysisofefficientunderwaterradiobasedwirelesslink
AT atifjamil surfacewavesanalysisofefficientunderwaterradiobasedwirelesslink
AT muhammaddawoodidrees surfacewavesanalysisofefficientunderwaterradiobasedwirelesslink
AT arsalanansari surfacewavesanalysisofefficientunderwaterradiobasedwirelesslink
AT abdulsami surfacewavesanalysisofefficientunderwaterradiobasedwirelesslink
_version_ 1718428920950292480