Nuclear translocation of jacob in hippocampal neurons after stimuli inducing long-term potentiation but not long-term depression.

<h4>Background</h4>In recent years a number of potential synapto-nuclear protein messengers have been characterized that are thought to be involved in plasticity-related gene expression, and that have the capacity of importin- mediated and activity-dependent nuclear import. However, ther...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Thomas Behnisch, Pingan Yuanxiang, Philipp Bethge, Suhel Parvez, Ying Chen, Jin Yu, Anna Karpova, Julietta U Frey, Marina Mikhaylova, Michael R Kreutz
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2011
Materias:
R
Q
Acceso en línea:https://doaj.org/article/4e23ee731e04442daaf05ab82e8a2db3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4e23ee731e04442daaf05ab82e8a2db3
record_format dspace
spelling oai:doaj.org-article:4e23ee731e04442daaf05ab82e8a2db32021-11-18T06:58:34ZNuclear translocation of jacob in hippocampal neurons after stimuli inducing long-term potentiation but not long-term depression.1932-620310.1371/journal.pone.0017276https://doaj.org/article/4e23ee731e04442daaf05ab82e8a2db32011-02-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21364755/?tool=EBIhttps://doaj.org/toc/1932-6203<h4>Background</h4>In recent years a number of potential synapto-nuclear protein messengers have been characterized that are thought to be involved in plasticity-related gene expression, and that have the capacity of importin- mediated and activity-dependent nuclear import. However, there is a surprising paucity of data showing the nuclear import of such proteins in cellular models of learning and memory. Only recently it was found that the transcription factor cyclic AMP response element binding protein 2 (CREB2) transits to the nucleus during long-term depression (LTD), but not during long-term potentiation (LTP) of synaptic transmission in hippocampal primary neurons. Jacob is another messenger that couples NMDA-receptor-activity to nuclear gene expression. We therefore aimed to study whether Jacob accumulates in the nucleus in physiological relevant models of activity-dependent synaptic plasticity.<h4>Methodology/principal findings</h4>We have analyzed the dynamics of Jacob's nuclear import following induction of NMDA-receptor dependent LTP or LTD at Schaffer collateral-CA1 synapses in rat hippocampal slices. Using time-lapse imaging of neurons expressing a Jacob-Green-Fluorescent-Protein we found that Jacob rapidly translocates from dendrites to the nucleus already during the tetanization period of LTP, but not after induction of LTD. Immunocytochemical stainings confirmed the nuclear accumulation of endogenous Jacob in comparison to apical dendrites after induction of LTP but not LTD. Complementary findings were obtained after induction of NMDA-receptor dependent chemical LTP and LTD in hippocampal primary neurons. However, in accordance with previous studies, high concentrations of NMDA and glycine as well as specific activation of extrasynaptic NMDA-receptors resembling pathological conditions induce an even more profound increase of nuclear Jacob levels.<h4>Conclusions/significance</h4>Taken together, these findings suggest that the two major forms of NMDA-receptor dependent synaptic plasticity, LTP and LTD, elicit the transition of different synapto-nuclear messengers albeit in both cases importin-mediated retrograde transport and NMDA-receptor activation is required.Thomas BehnischPingan YuanxiangPhilipp BethgeSuhel ParvezYing ChenJin YuAnna KarpovaJulietta U FreyMarina MikhaylovaMichael R KreutzPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 6, Iss 2, p e17276 (2011)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Thomas Behnisch
Pingan Yuanxiang
Philipp Bethge
Suhel Parvez
Ying Chen
Jin Yu
Anna Karpova
Julietta U Frey
Marina Mikhaylova
Michael R Kreutz
Nuclear translocation of jacob in hippocampal neurons after stimuli inducing long-term potentiation but not long-term depression.
description <h4>Background</h4>In recent years a number of potential synapto-nuclear protein messengers have been characterized that are thought to be involved in plasticity-related gene expression, and that have the capacity of importin- mediated and activity-dependent nuclear import. However, there is a surprising paucity of data showing the nuclear import of such proteins in cellular models of learning and memory. Only recently it was found that the transcription factor cyclic AMP response element binding protein 2 (CREB2) transits to the nucleus during long-term depression (LTD), but not during long-term potentiation (LTP) of synaptic transmission in hippocampal primary neurons. Jacob is another messenger that couples NMDA-receptor-activity to nuclear gene expression. We therefore aimed to study whether Jacob accumulates in the nucleus in physiological relevant models of activity-dependent synaptic plasticity.<h4>Methodology/principal findings</h4>We have analyzed the dynamics of Jacob's nuclear import following induction of NMDA-receptor dependent LTP or LTD at Schaffer collateral-CA1 synapses in rat hippocampal slices. Using time-lapse imaging of neurons expressing a Jacob-Green-Fluorescent-Protein we found that Jacob rapidly translocates from dendrites to the nucleus already during the tetanization period of LTP, but not after induction of LTD. Immunocytochemical stainings confirmed the nuclear accumulation of endogenous Jacob in comparison to apical dendrites after induction of LTP but not LTD. Complementary findings were obtained after induction of NMDA-receptor dependent chemical LTP and LTD in hippocampal primary neurons. However, in accordance with previous studies, high concentrations of NMDA and glycine as well as specific activation of extrasynaptic NMDA-receptors resembling pathological conditions induce an even more profound increase of nuclear Jacob levels.<h4>Conclusions/significance</h4>Taken together, these findings suggest that the two major forms of NMDA-receptor dependent synaptic plasticity, LTP and LTD, elicit the transition of different synapto-nuclear messengers albeit in both cases importin-mediated retrograde transport and NMDA-receptor activation is required.
format article
author Thomas Behnisch
Pingan Yuanxiang
Philipp Bethge
Suhel Parvez
Ying Chen
Jin Yu
Anna Karpova
Julietta U Frey
Marina Mikhaylova
Michael R Kreutz
author_facet Thomas Behnisch
Pingan Yuanxiang
Philipp Bethge
Suhel Parvez
Ying Chen
Jin Yu
Anna Karpova
Julietta U Frey
Marina Mikhaylova
Michael R Kreutz
author_sort Thomas Behnisch
title Nuclear translocation of jacob in hippocampal neurons after stimuli inducing long-term potentiation but not long-term depression.
title_short Nuclear translocation of jacob in hippocampal neurons after stimuli inducing long-term potentiation but not long-term depression.
title_full Nuclear translocation of jacob in hippocampal neurons after stimuli inducing long-term potentiation but not long-term depression.
title_fullStr Nuclear translocation of jacob in hippocampal neurons after stimuli inducing long-term potentiation but not long-term depression.
title_full_unstemmed Nuclear translocation of jacob in hippocampal neurons after stimuli inducing long-term potentiation but not long-term depression.
title_sort nuclear translocation of jacob in hippocampal neurons after stimuli inducing long-term potentiation but not long-term depression.
publisher Public Library of Science (PLoS)
publishDate 2011
url https://doaj.org/article/4e23ee731e04442daaf05ab82e8a2db3
work_keys_str_mv AT thomasbehnisch nucleartranslocationofjacobinhippocampalneuronsafterstimuliinducinglongtermpotentiationbutnotlongtermdepression
AT pinganyuanxiang nucleartranslocationofjacobinhippocampalneuronsafterstimuliinducinglongtermpotentiationbutnotlongtermdepression
AT philippbethge nucleartranslocationofjacobinhippocampalneuronsafterstimuliinducinglongtermpotentiationbutnotlongtermdepression
AT suhelparvez nucleartranslocationofjacobinhippocampalneuronsafterstimuliinducinglongtermpotentiationbutnotlongtermdepression
AT yingchen nucleartranslocationofjacobinhippocampalneuronsafterstimuliinducinglongtermpotentiationbutnotlongtermdepression
AT jinyu nucleartranslocationofjacobinhippocampalneuronsafterstimuliinducinglongtermpotentiationbutnotlongtermdepression
AT annakarpova nucleartranslocationofjacobinhippocampalneuronsafterstimuliinducinglongtermpotentiationbutnotlongtermdepression
AT juliettaufrey nucleartranslocationofjacobinhippocampalneuronsafterstimuliinducinglongtermpotentiationbutnotlongtermdepression
AT marinamikhaylova nucleartranslocationofjacobinhippocampalneuronsafterstimuliinducinglongtermpotentiationbutnotlongtermdepression
AT michaelrkreutz nucleartranslocationofjacobinhippocampalneuronsafterstimuliinducinglongtermpotentiationbutnotlongtermdepression
_version_ 1718424101334286336