Skeleton Joints Moment (SJM): A Hand Gesture Dimensionality Reduction for Central Nervous System Interaction
Recent breakthroughs with numerous visual experiences using mobile devices encourage the research of human-computer interaction (HCI) involving hand gesture recognition for Holograms, Virtual Reality, and Augmented Reality. The rise of these technologies allows educators in medical segments to apply...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4e266d5f8ae74008b6476774fe2c96ec |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4e266d5f8ae74008b6476774fe2c96ec |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4e266d5f8ae74008b6476774fe2c96ec2021-11-09T00:01:23ZSkeleton Joints Moment (SJM): A Hand Gesture Dimensionality Reduction for Central Nervous System Interaction2169-353610.1109/ACCESS.2021.3123570https://doaj.org/article/4e266d5f8ae74008b6476774fe2c96ec2021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9591567/https://doaj.org/toc/2169-3536Recent breakthroughs with numerous visual experiences using mobile devices encourage the research of human-computer interaction (HCI) involving hand gesture recognition for Holograms, Virtual Reality, and Augmented Reality. The rise of these technologies allows educators in medical segments to apply new pedagogy by interacting with virtual content in a coherent learning environment. This paper proposed the Central Nervous System (CNS) interaction using the Skeleton Joints Moment (SJM) approach for dimension reduction with k Nearest Neighbour (k-NN) for hand gesture classification. Over the past few decades, researchers have proposed various techniques in dimension reduction. One of the methods is principal component analysis (PCA). Experimental results indicated that the SJM technique has similar accuracy to PCA, where both methods showed 96% of prediction using hand skeleton joints data. In addition, PCA has a higher uncertainty of mean error 0.75 compared to SJM at only 0.01. Furthermore, PCA has the worst complexity of <inline-formula> <tex-math notation="LaTeX">$O(min(p^{3},n^{3}))$ </tex-math></inline-formula> where SJM <inline-formula> <tex-math notation="LaTeX">$O(n/d)$ </tex-math></inline-formula>. Evaluation results using the T-Test showed a significant difference between SJM and PCA where <inline-formula> <tex-math notation="LaTeX">$p < 0.05$ </tex-math></inline-formula>. Thus, there is evidence to reject the null hypothesis.Zainal Abdul KaharPuteri Suhaiza SulaimanFatimah KhalidAzreen AzmanIEEEarticleHand gesture recognitiondimensionality reductionmachine learninghologramElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 146640-146652 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Hand gesture recognition dimensionality reduction machine learning hologram Electrical engineering. Electronics. Nuclear engineering TK1-9971 |
spellingShingle |
Hand gesture recognition dimensionality reduction machine learning hologram Electrical engineering. Electronics. Nuclear engineering TK1-9971 Zainal Abdul Kahar Puteri Suhaiza Sulaiman Fatimah Khalid Azreen Azman Skeleton Joints Moment (SJM): A Hand Gesture Dimensionality Reduction for Central Nervous System Interaction |
description |
Recent breakthroughs with numerous visual experiences using mobile devices encourage the research of human-computer interaction (HCI) involving hand gesture recognition for Holograms, Virtual Reality, and Augmented Reality. The rise of these technologies allows educators in medical segments to apply new pedagogy by interacting with virtual content in a coherent learning environment. This paper proposed the Central Nervous System (CNS) interaction using the Skeleton Joints Moment (SJM) approach for dimension reduction with k Nearest Neighbour (k-NN) for hand gesture classification. Over the past few decades, researchers have proposed various techniques in dimension reduction. One of the methods is principal component analysis (PCA). Experimental results indicated that the SJM technique has similar accuracy to PCA, where both methods showed 96% of prediction using hand skeleton joints data. In addition, PCA has a higher uncertainty of mean error 0.75 compared to SJM at only 0.01. Furthermore, PCA has the worst complexity of <inline-formula> <tex-math notation="LaTeX">$O(min(p^{3},n^{3}))$ </tex-math></inline-formula> where SJM <inline-formula> <tex-math notation="LaTeX">$O(n/d)$ </tex-math></inline-formula>. Evaluation results using the T-Test showed a significant difference between SJM and PCA where <inline-formula> <tex-math notation="LaTeX">$p < 0.05$ </tex-math></inline-formula>. Thus, there is evidence to reject the null hypothesis. |
format |
article |
author |
Zainal Abdul Kahar Puteri Suhaiza Sulaiman Fatimah Khalid Azreen Azman |
author_facet |
Zainal Abdul Kahar Puteri Suhaiza Sulaiman Fatimah Khalid Azreen Azman |
author_sort |
Zainal Abdul Kahar |
title |
Skeleton Joints Moment (SJM): A Hand Gesture Dimensionality Reduction for Central Nervous System Interaction |
title_short |
Skeleton Joints Moment (SJM): A Hand Gesture Dimensionality Reduction for Central Nervous System Interaction |
title_full |
Skeleton Joints Moment (SJM): A Hand Gesture Dimensionality Reduction for Central Nervous System Interaction |
title_fullStr |
Skeleton Joints Moment (SJM): A Hand Gesture Dimensionality Reduction for Central Nervous System Interaction |
title_full_unstemmed |
Skeleton Joints Moment (SJM): A Hand Gesture Dimensionality Reduction for Central Nervous System Interaction |
title_sort |
skeleton joints moment (sjm): a hand gesture dimensionality reduction for central nervous system interaction |
publisher |
IEEE |
publishDate |
2021 |
url |
https://doaj.org/article/4e266d5f8ae74008b6476774fe2c96ec |
work_keys_str_mv |
AT zainalabdulkahar skeletonjointsmomentsjmahandgesturedimensionalityreductionforcentralnervoussysteminteraction AT puterisuhaizasulaiman skeletonjointsmomentsjmahandgesturedimensionalityreductionforcentralnervoussysteminteraction AT fatimahkhalid skeletonjointsmomentsjmahandgesturedimensionalityreductionforcentralnervoussysteminteraction AT azreenazman skeletonjointsmomentsjmahandgesturedimensionalityreductionforcentralnervoussysteminteraction |
_version_ |
1718441383409221632 |