Skeleton Joints Moment (SJM): A Hand Gesture Dimensionality Reduction for Central Nervous System Interaction

Recent breakthroughs with numerous visual experiences using mobile devices encourage the research of human-computer interaction (HCI) involving hand gesture recognition for Holograms, Virtual Reality, and Augmented Reality. The rise of these technologies allows educators in medical segments to apply...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zainal Abdul Kahar, Puteri Suhaiza Sulaiman, Fatimah Khalid, Azreen Azman
Formato: article
Lenguaje:EN
Publicado: IEEE 2021
Materias:
Acceso en línea:https://doaj.org/article/4e266d5f8ae74008b6476774fe2c96ec
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4e266d5f8ae74008b6476774fe2c96ec
record_format dspace
spelling oai:doaj.org-article:4e266d5f8ae74008b6476774fe2c96ec2021-11-09T00:01:23ZSkeleton Joints Moment (SJM): A Hand Gesture Dimensionality Reduction for Central Nervous System Interaction2169-353610.1109/ACCESS.2021.3123570https://doaj.org/article/4e266d5f8ae74008b6476774fe2c96ec2021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9591567/https://doaj.org/toc/2169-3536Recent breakthroughs with numerous visual experiences using mobile devices encourage the research of human-computer interaction (HCI) involving hand gesture recognition for Holograms, Virtual Reality, and Augmented Reality. The rise of these technologies allows educators in medical segments to apply new pedagogy by interacting with virtual content in a coherent learning environment. This paper proposed the Central Nervous System (CNS) interaction using the Skeleton Joints Moment (SJM) approach for dimension reduction with k Nearest Neighbour (k-NN) for hand gesture classification. Over the past few decades, researchers have proposed various techniques in dimension reduction. One of the methods is principal component analysis (PCA). Experimental results indicated that the SJM technique has similar accuracy to PCA, where both methods showed 96&#x0025; of prediction using hand skeleton joints data. In addition, PCA has a higher uncertainty of mean error 0.75 compared to SJM at only 0.01. Furthermore, PCA has the worst complexity of <inline-formula> <tex-math notation="LaTeX">$O(min(p^{3},n^{3}))$ </tex-math></inline-formula> where SJM <inline-formula> <tex-math notation="LaTeX">$O(n/d)$ </tex-math></inline-formula>. Evaluation results using the T-Test showed a significant difference between SJM and PCA where <inline-formula> <tex-math notation="LaTeX">$p &lt; 0.05$ </tex-math></inline-formula>. Thus, there is evidence to reject the null hypothesis.Zainal Abdul KaharPuteri Suhaiza SulaimanFatimah KhalidAzreen AzmanIEEEarticleHand gesture recognitiondimensionality reductionmachine learninghologramElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 146640-146652 (2021)
institution DOAJ
collection DOAJ
language EN
topic Hand gesture recognition
dimensionality reduction
machine learning
hologram
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
spellingShingle Hand gesture recognition
dimensionality reduction
machine learning
hologram
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Zainal Abdul Kahar
Puteri Suhaiza Sulaiman
Fatimah Khalid
Azreen Azman
Skeleton Joints Moment (SJM): A Hand Gesture Dimensionality Reduction for Central Nervous System Interaction
description Recent breakthroughs with numerous visual experiences using mobile devices encourage the research of human-computer interaction (HCI) involving hand gesture recognition for Holograms, Virtual Reality, and Augmented Reality. The rise of these technologies allows educators in medical segments to apply new pedagogy by interacting with virtual content in a coherent learning environment. This paper proposed the Central Nervous System (CNS) interaction using the Skeleton Joints Moment (SJM) approach for dimension reduction with k Nearest Neighbour (k-NN) for hand gesture classification. Over the past few decades, researchers have proposed various techniques in dimension reduction. One of the methods is principal component analysis (PCA). Experimental results indicated that the SJM technique has similar accuracy to PCA, where both methods showed 96&#x0025; of prediction using hand skeleton joints data. In addition, PCA has a higher uncertainty of mean error 0.75 compared to SJM at only 0.01. Furthermore, PCA has the worst complexity of <inline-formula> <tex-math notation="LaTeX">$O(min(p^{3},n^{3}))$ </tex-math></inline-formula> where SJM <inline-formula> <tex-math notation="LaTeX">$O(n/d)$ </tex-math></inline-formula>. Evaluation results using the T-Test showed a significant difference between SJM and PCA where <inline-formula> <tex-math notation="LaTeX">$p &lt; 0.05$ </tex-math></inline-formula>. Thus, there is evidence to reject the null hypothesis.
format article
author Zainal Abdul Kahar
Puteri Suhaiza Sulaiman
Fatimah Khalid
Azreen Azman
author_facet Zainal Abdul Kahar
Puteri Suhaiza Sulaiman
Fatimah Khalid
Azreen Azman
author_sort Zainal Abdul Kahar
title Skeleton Joints Moment (SJM): A Hand Gesture Dimensionality Reduction for Central Nervous System Interaction
title_short Skeleton Joints Moment (SJM): A Hand Gesture Dimensionality Reduction for Central Nervous System Interaction
title_full Skeleton Joints Moment (SJM): A Hand Gesture Dimensionality Reduction for Central Nervous System Interaction
title_fullStr Skeleton Joints Moment (SJM): A Hand Gesture Dimensionality Reduction for Central Nervous System Interaction
title_full_unstemmed Skeleton Joints Moment (SJM): A Hand Gesture Dimensionality Reduction for Central Nervous System Interaction
title_sort skeleton joints moment (sjm): a hand gesture dimensionality reduction for central nervous system interaction
publisher IEEE
publishDate 2021
url https://doaj.org/article/4e266d5f8ae74008b6476774fe2c96ec
work_keys_str_mv AT zainalabdulkahar skeletonjointsmomentsjmahandgesturedimensionalityreductionforcentralnervoussysteminteraction
AT puterisuhaizasulaiman skeletonjointsmomentsjmahandgesturedimensionalityreductionforcentralnervoussysteminteraction
AT fatimahkhalid skeletonjointsmomentsjmahandgesturedimensionalityreductionforcentralnervoussysteminteraction
AT azreenazman skeletonjointsmomentsjmahandgesturedimensionalityreductionforcentralnervoussysteminteraction
_version_ 1718441383409221632