Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble

Future quantum networks will require quantum memories with effective storage-and-retrieval capabilities. Here, the authors use electromagnetically-induced transparency in a high optical-depth, spatially-multiplexed cold atom ensemble to store and retrieve polarization qubits with high efficiency.

Guardado en:
Detalles Bibliográficos
Autores principales: Pierre Vernaz-Gris, Kun Huang, Mingtao Cao, Alexandra S. Sheremet, Julien Laurat
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/4e3e838669164f478e18be3f66d3b8a8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4e3e838669164f478e18be3f66d3b8a8
record_format dspace
spelling oai:doaj.org-article:4e3e838669164f478e18be3f66d3b8a82021-12-02T14:40:55ZHighly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble10.1038/s41467-017-02775-82041-1723https://doaj.org/article/4e3e838669164f478e18be3f66d3b8a82018-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-02775-8https://doaj.org/toc/2041-1723Future quantum networks will require quantum memories with effective storage-and-retrieval capabilities. Here, the authors use electromagnetically-induced transparency in a high optical-depth, spatially-multiplexed cold atom ensemble to store and retrieve polarization qubits with high efficiency.Pierre Vernaz-GrisKun HuangMingtao CaoAlexandra S. SheremetJulien LauratNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-6 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Pierre Vernaz-Gris
Kun Huang
Mingtao Cao
Alexandra S. Sheremet
Julien Laurat
Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble
description Future quantum networks will require quantum memories with effective storage-and-retrieval capabilities. Here, the authors use electromagnetically-induced transparency in a high optical-depth, spatially-multiplexed cold atom ensemble to store and retrieve polarization qubits with high efficiency.
format article
author Pierre Vernaz-Gris
Kun Huang
Mingtao Cao
Alexandra S. Sheremet
Julien Laurat
author_facet Pierre Vernaz-Gris
Kun Huang
Mingtao Cao
Alexandra S. Sheremet
Julien Laurat
author_sort Pierre Vernaz-Gris
title Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble
title_short Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble
title_full Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble
title_fullStr Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble
title_full_unstemmed Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble
title_sort highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/4e3e838669164f478e18be3f66d3b8a8
work_keys_str_mv AT pierrevernazgris highlyefficientquantummemoryforpolarizationqubitsinaspatiallymultiplexedcoldatomicensemble
AT kunhuang highlyefficientquantummemoryforpolarizationqubitsinaspatiallymultiplexedcoldatomicensemble
AT mingtaocao highlyefficientquantummemoryforpolarizationqubitsinaspatiallymultiplexedcoldatomicensemble
AT alexandrassheremet highlyefficientquantummemoryforpolarizationqubitsinaspatiallymultiplexedcoldatomicensemble
AT julienlaurat highlyefficientquantummemoryforpolarizationqubitsinaspatiallymultiplexedcoldatomicensemble
_version_ 1718390108797796352