Localized states and quantum effect of photo-generated carriers in photovoltaic system

Abstract We have fabricated the multiple nanolayers impuritied on silicon pillars for Si solar cells to pick up photons in ultraviolet and infrared region of solar spectra, in which the localized states originated from nanosilicon doped with oxygen are built to avoid Auger recombination, and some in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Wei-Qi Huang, Shi-Rong Liu, Zhong-Mei Huang, Xue-Ke Wu, Chao-Jian Qin
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/4e53fec56cc34ee68a25fa3145a521ff
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract We have fabricated the multiple nanolayers impuritied on silicon pillars for Si solar cells to pick up photons in ultraviolet and infrared region of solar spectra, in which the localized states originated from nanosilicon doped with oxygen are built to avoid Auger recombination, and some interesting quantum phenomena in the localized states have been observed. The quantum effect of photo-generated carriers has been observed in I-V curve measurement on the photovoltaic sample prepared in oxygen by using nanosecond pulsed laser. More interesting, the twin states of quantum vibration are measured in the localized states originated from the impuritied nanosilicon, which provides a stable reservoir for electrons in the photovaltaic system. It should be noted that the amplitude change of the quantum vibration occurs under magnetic field with 0.33T on the sample prepared in oxygen, owing to the electron spin in the localized states. The photoluminescence (PL) spectra measured from 300 nm to 1700 nm exhibit the localized states in various regions in the photovoltaic system, in which the electrons can stand in the localized states with longer lifetime to be uneasy into Auger recombination.