Dimensionality reduction using singular vectors
Abstract A common problem in machine learning and pattern recognition is the process of identifying the most relevant features, specifically in dealing with high-dimensional datasets in bioinformatics. In this paper, we propose a new feature selection method, called Singular-Vectors Feature Selectio...
Guardado en:
Autores principales: | Majid Afshar, Hamid Usefi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4e673d78ae7e4591840721580ab9e0f4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Optimal distribution of piezoelectric patches for active vibration reduction of a thick plate using singular value decomposition approach
por: Azin Nadi, et al.
Publicado: (2021) -
Loop quantum cosmology and singularities
por: Ward Struyve
Publicado: (2017) -
Dimensionality reduction for classification of object weight from electromyography.
por: Elnaz Lashgari, et al.
Publicado: (2021) -
Switchable phase and polarization singular beams generation using dielectric metasurfaces
por: Yanliang He, et al.
Publicado: (2017) -
Naked singularity, firewall, and Hawking radiation
por: Hongsheng Zhang
Publicado: (2017)