Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity
Kamyar Shameli1, Mansor Bin Ahmad1, Mohsen Zargar2, Wan Md Zin Wan Yunus1, Nor Azowa Ibrahim11Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Selangor, Malaysia; 2Department of Biology, Islamic Azad University, Qum IranAbstract: Using the chemical reduction method, silver nan...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2011
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4e68b37888934d428c728d621400375f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Kamyar Shameli1, Mansor Bin Ahmad1, Mohsen Zargar2, Wan Md Zin Wan Yunus1, Nor Azowa Ibrahim11Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Selangor, Malaysia; 2Department of Biology, Islamic Azad University, Qum IranAbstract: Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12–3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO3. The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller–Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications.Keywords: silver nanoparticles, zeolite, antibacterial activity, Mueller–Hinton agar, transmission electron microscopy |
---|