A method to find longevity-selected positions in the mammalian proteome.
Evolutionary theory suggests that the force of natural selection decreases with age. To explore the extent to which this prediction directly affects protein structure and function, we used multiple regression to find longevity-selected positions, defined as the columns of a sequence alignment conser...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4e6cd535603f43648b33404c83b745a7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4e6cd535603f43648b33404c83b745a7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4e6cd535603f43648b33404c83b745a72021-11-18T07:15:51ZA method to find longevity-selected positions in the mammalian proteome.1932-620310.1371/journal.pone.0038595https://doaj.org/article/4e6cd535603f43648b33404c83b745a72012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22701678/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203Evolutionary theory suggests that the force of natural selection decreases with age. To explore the extent to which this prediction directly affects protein structure and function, we used multiple regression to find longevity-selected positions, defined as the columns of a sequence alignment conserved in long-lived but not short-lived mammal species. We analyzed 7,590 orthologous protein families in 33 mammalian species, accounting for body mass, phylogeny, and species-specific mutation rate. Overall, we found that the number of longevity-selected positions in the mammalian proteome is much higher than would be expected by chance. Further, these positions are enriched in domains of several proteins that interact with one another in inflammation and other aging-related processes, as well as in organismal development. We present as an example the kinase domain of anti-müllerian hormone type-2 receptor (AMHR2). AMHR2 inhibits ovarian follicle recruitment and growth, and a homology model of the kinase domain shows that its longevity-selected positions cluster near a SNP associated with delayed human menopause. Distinct from its canonical role in development, this region of AMHR2 may function to regulate the protein's activity in a lifespan-specific manner.Jeremy SemeiksNick V GrishinPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 7, Iss 6, p e38595 (2012) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jeremy Semeiks Nick V Grishin A method to find longevity-selected positions in the mammalian proteome. |
description |
Evolutionary theory suggests that the force of natural selection decreases with age. To explore the extent to which this prediction directly affects protein structure and function, we used multiple regression to find longevity-selected positions, defined as the columns of a sequence alignment conserved in long-lived but not short-lived mammal species. We analyzed 7,590 orthologous protein families in 33 mammalian species, accounting for body mass, phylogeny, and species-specific mutation rate. Overall, we found that the number of longevity-selected positions in the mammalian proteome is much higher than would be expected by chance. Further, these positions are enriched in domains of several proteins that interact with one another in inflammation and other aging-related processes, as well as in organismal development. We present as an example the kinase domain of anti-müllerian hormone type-2 receptor (AMHR2). AMHR2 inhibits ovarian follicle recruitment and growth, and a homology model of the kinase domain shows that its longevity-selected positions cluster near a SNP associated with delayed human menopause. Distinct from its canonical role in development, this region of AMHR2 may function to regulate the protein's activity in a lifespan-specific manner. |
format |
article |
author |
Jeremy Semeiks Nick V Grishin |
author_facet |
Jeremy Semeiks Nick V Grishin |
author_sort |
Jeremy Semeiks |
title |
A method to find longevity-selected positions in the mammalian proteome. |
title_short |
A method to find longevity-selected positions in the mammalian proteome. |
title_full |
A method to find longevity-selected positions in the mammalian proteome. |
title_fullStr |
A method to find longevity-selected positions in the mammalian proteome. |
title_full_unstemmed |
A method to find longevity-selected positions in the mammalian proteome. |
title_sort |
method to find longevity-selected positions in the mammalian proteome. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2012 |
url |
https://doaj.org/article/4e6cd535603f43648b33404c83b745a7 |
work_keys_str_mv |
AT jeremysemeiks amethodtofindlongevityselectedpositionsinthemammalianproteome AT nickvgrishin amethodtofindlongevityselectedpositionsinthemammalianproteome AT jeremysemeiks methodtofindlongevityselectedpositionsinthemammalianproteome AT nickvgrishin methodtofindlongevityselectedpositionsinthemammalianproteome |
_version_ |
1718423724404768768 |