Augmenting zero-Kelvin quantum mechanics with machine learning for the prediction of chemical reactions at high temperatures

Computational material design often does not account for temperature effects. The present manuscript combines quantum-mechanics based calculations with a machine-learned correction to establish a unified thermodynamics framework for accurate prediction of high temperature reaction free energies in o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jose Antonio Garrido Torres, Vahe Gharakhanyan, Nongnuch Artrith, Tobias Hoffmann Eegholm, Alexander Urban
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/4e7b0698a52f42319f93d8d5a7ab17e2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Computational material design often does not account for temperature effects. The present manuscript combines quantum-mechanics based calculations with a machine-learned correction to establish a unified thermodynamics framework for accurate prediction of high temperature reaction free energies in oxides.