Augmenting zero-Kelvin quantum mechanics with machine learning for the prediction of chemical reactions at high temperatures
Computational material design often does not account for temperature effects. The present manuscript combines quantum-mechanics based calculations with a machine-learned correction to establish a unified thermodynamics framework for accurate prediction of high temperature reaction free energies in o...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4e7b0698a52f42319f93d8d5a7ab17e2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4e7b0698a52f42319f93d8d5a7ab17e2 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4e7b0698a52f42319f93d8d5a7ab17e22021-12-05T12:22:46ZAugmenting zero-Kelvin quantum mechanics with machine learning for the prediction of chemical reactions at high temperatures10.1038/s41467-021-27154-22041-1723https://doaj.org/article/4e7b0698a52f42319f93d8d5a7ab17e22021-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-27154-2https://doaj.org/toc/2041-1723Computational material design often does not account for temperature effects. The present manuscript combines quantum-mechanics based calculations with a machine-learned correction to establish a unified thermodynamics framework for accurate prediction of high temperature reaction free energies in oxides.Jose Antonio Garrido TorresVahe GharakhanyanNongnuch ArtrithTobias Hoffmann EegholmAlexander UrbanNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Jose Antonio Garrido Torres Vahe Gharakhanyan Nongnuch Artrith Tobias Hoffmann Eegholm Alexander Urban Augmenting zero-Kelvin quantum mechanics with machine learning for the prediction of chemical reactions at high temperatures |
description |
Computational material design often does not account for temperature effects. The present manuscript combines quantum-mechanics based calculations with a machine-learned correction to establish a unified thermodynamics framework for accurate prediction of high temperature reaction free energies in oxides. |
format |
article |
author |
Jose Antonio Garrido Torres Vahe Gharakhanyan Nongnuch Artrith Tobias Hoffmann Eegholm Alexander Urban |
author_facet |
Jose Antonio Garrido Torres Vahe Gharakhanyan Nongnuch Artrith Tobias Hoffmann Eegholm Alexander Urban |
author_sort |
Jose Antonio Garrido Torres |
title |
Augmenting zero-Kelvin quantum mechanics with machine learning for the prediction of chemical reactions at high temperatures |
title_short |
Augmenting zero-Kelvin quantum mechanics with machine learning for the prediction of chemical reactions at high temperatures |
title_full |
Augmenting zero-Kelvin quantum mechanics with machine learning for the prediction of chemical reactions at high temperatures |
title_fullStr |
Augmenting zero-Kelvin quantum mechanics with machine learning for the prediction of chemical reactions at high temperatures |
title_full_unstemmed |
Augmenting zero-Kelvin quantum mechanics with machine learning for the prediction of chemical reactions at high temperatures |
title_sort |
augmenting zero-kelvin quantum mechanics with machine learning for the prediction of chemical reactions at high temperatures |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/4e7b0698a52f42319f93d8d5a7ab17e2 |
work_keys_str_mv |
AT joseantoniogarridotorres augmentingzerokelvinquantummechanicswithmachinelearningforthepredictionofchemicalreactionsathightemperatures AT vahegharakhanyan augmentingzerokelvinquantummechanicswithmachinelearningforthepredictionofchemicalreactionsathightemperatures AT nongnuchartrith augmentingzerokelvinquantummechanicswithmachinelearningforthepredictionofchemicalreactionsathightemperatures AT tobiashoffmanneegholm augmentingzerokelvinquantummechanicswithmachinelearningforthepredictionofchemicalreactionsathightemperatures AT alexanderurban augmentingzerokelvinquantummechanicswithmachinelearningforthepredictionofchemicalreactionsathightemperatures |
_version_ |
1718372014580826112 |