Augmenting zero-Kelvin quantum mechanics with machine learning for the prediction of chemical reactions at high temperatures

Computational material design often does not account for temperature effects. The present manuscript combines quantum-mechanics based calculations with a machine-learned correction to establish a unified thermodynamics framework for accurate prediction of high temperature reaction free energies in o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jose Antonio Garrido Torres, Vahe Gharakhanyan, Nongnuch Artrith, Tobias Hoffmann Eegholm, Alexander Urban
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/4e7b0698a52f42319f93d8d5a7ab17e2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4e7b0698a52f42319f93d8d5a7ab17e2
record_format dspace
spelling oai:doaj.org-article:4e7b0698a52f42319f93d8d5a7ab17e22021-12-05T12:22:46ZAugmenting zero-Kelvin quantum mechanics with machine learning for the prediction of chemical reactions at high temperatures10.1038/s41467-021-27154-22041-1723https://doaj.org/article/4e7b0698a52f42319f93d8d5a7ab17e22021-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-27154-2https://doaj.org/toc/2041-1723Computational material design often does not account for temperature effects. The present manuscript combines quantum-mechanics based calculations with a machine-learned correction to establish a unified thermodynamics framework for accurate prediction of high temperature reaction free energies in oxides.Jose Antonio Garrido TorresVahe GharakhanyanNongnuch ArtrithTobias Hoffmann EegholmAlexander UrbanNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Jose Antonio Garrido Torres
Vahe Gharakhanyan
Nongnuch Artrith
Tobias Hoffmann Eegholm
Alexander Urban
Augmenting zero-Kelvin quantum mechanics with machine learning for the prediction of chemical reactions at high temperatures
description Computational material design often does not account for temperature effects. The present manuscript combines quantum-mechanics based calculations with a machine-learned correction to establish a unified thermodynamics framework for accurate prediction of high temperature reaction free energies in oxides.
format article
author Jose Antonio Garrido Torres
Vahe Gharakhanyan
Nongnuch Artrith
Tobias Hoffmann Eegholm
Alexander Urban
author_facet Jose Antonio Garrido Torres
Vahe Gharakhanyan
Nongnuch Artrith
Tobias Hoffmann Eegholm
Alexander Urban
author_sort Jose Antonio Garrido Torres
title Augmenting zero-Kelvin quantum mechanics with machine learning for the prediction of chemical reactions at high temperatures
title_short Augmenting zero-Kelvin quantum mechanics with machine learning for the prediction of chemical reactions at high temperatures
title_full Augmenting zero-Kelvin quantum mechanics with machine learning for the prediction of chemical reactions at high temperatures
title_fullStr Augmenting zero-Kelvin quantum mechanics with machine learning for the prediction of chemical reactions at high temperatures
title_full_unstemmed Augmenting zero-Kelvin quantum mechanics with machine learning for the prediction of chemical reactions at high temperatures
title_sort augmenting zero-kelvin quantum mechanics with machine learning for the prediction of chemical reactions at high temperatures
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/4e7b0698a52f42319f93d8d5a7ab17e2
work_keys_str_mv AT joseantoniogarridotorres augmentingzerokelvinquantummechanicswithmachinelearningforthepredictionofchemicalreactionsathightemperatures
AT vahegharakhanyan augmentingzerokelvinquantummechanicswithmachinelearningforthepredictionofchemicalreactionsathightemperatures
AT nongnuchartrith augmentingzerokelvinquantummechanicswithmachinelearningforthepredictionofchemicalreactionsathightemperatures
AT tobiashoffmanneegholm augmentingzerokelvinquantummechanicswithmachinelearningforthepredictionofchemicalreactionsathightemperatures
AT alexanderurban augmentingzerokelvinquantummechanicswithmachinelearningforthepredictionofchemicalreactionsathightemperatures
_version_ 1718372014580826112