Augmenting zero-Kelvin quantum mechanics with machine learning for the prediction of chemical reactions at high temperatures
Computational material design often does not account for temperature effects. The present manuscript combines quantum-mechanics based calculations with a machine-learned correction to establish a unified thermodynamics framework for accurate prediction of high temperature reaction free energies in o...
Guardado en:
Autores principales: | Jose Antonio Garrido Torres, Vahe Gharakhanyan, Nongnuch Artrith, Tobias Hoffmann Eegholm, Alexander Urban |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4e7b0698a52f42319f93d8d5a7ab17e2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Frustrated magnet for adiabatic demagnetization cooling to milli-Kelvin temperatures
por: Yoshifumi Tokiwa, et al.
Publicado: (2021) -
Coherent quantum control of nitrogen-vacancy center spins near 1000 kelvin
por: Gang-Qin Liu, et al.
Publicado: (2019) -
Zero-temperature quantum annealing bottlenecks in the spin-glass phase
por: Sergey Knysh
Publicado: (2016) -
Machine learning in chemical reaction space
por: Sina Stocker, et al.
Publicado: (2020) -
Influence of sub-zero temperature on nucleation and growth of copper nanoparticles in electrochemical reactions
por: Qiubo Zhang, et al.
Publicado: (2021)