Augmenting zero-Kelvin quantum mechanics with machine learning for the prediction of chemical reactions at high temperatures
Computational material design often does not account for temperature effects. The present manuscript combines quantum-mechanics based calculations with a machine-learned correction to establish a unified thermodynamics framework for accurate prediction of high temperature reaction free energies in o...
Enregistré dans:
Auteurs principaux: | , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/4e7b0698a52f42319f93d8d5a7ab17e2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Soyez le premier à ajouter un commentaire!