Predicting clinical events using Bayesian multivariate linear mixed models with application to scleroderma
Abstract Background Scleroderma is a serious chronic autoimmune disease in which a patient’s disease state manifests in several irregularly spaced longitudinal measures of lung, heart, skin, and other organ systems. Threshold crossings of pulmonary and cardiac measures indicate potentially life-thre...
Guardado en:
Autores principales: | Ji Soo Kim, Ami A. Shah, Laura K. Hummers, Scott L. Zeger |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4e8342060869466793bee7e2250f66f5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Chlorophyll a as an indicator of microcystin: Short-term forecasting and risk assessment in Lake Erie
por: Song S. Qian, et al.
Publicado: (2021) -
Analysis of multivariate longitudinal substance use outcomes using multivariate mixed cumulative logit model
por: Xiaolei Lin, et al.
Publicado: (2021) -
Dynamic Bayesian Networks for Integrating Multi-omics Time Series Microbiome Data
por: Daniel Ruiz-Perez, et al.
Publicado: (2021) -
Biological Network Inference With GRASP: A Bayesian Network Structure Learning Method Using Adaptive Sequential Monte Carlo
por: Kaixian Yu, et al.
Publicado: (2021) -
A bayesian approach to inferring the genetic population structure of sugarcane accessions from INTA (Argentina)
por: Pocovi,Mariana Inés, et al.
Publicado: (2015)