Unobtrusive detection of Parkinson’s disease from multi-modal and in-the-wild sensor data using deep learning techniques
Abstract Parkinson’s Disease (PD) is the second most common neurodegenerative disorder, affecting more than 1% of the population above 60 years old with both motor and non-motor symptoms of escalating severity as it progresses. Since it cannot be cured, treatment options focus on the improvement of...
Guardado en:
Autores principales: | Alexandros Papadopoulos, Dimitrios Iakovakis, Lisa Klingelhoefer, Sevasti Bostantjopoulou, K. Ray Chaudhuri, Konstantinos Kyritsis, Stelios Hadjidimitriou, Vasileios Charisis, Leontios J. Hadjileontiadis, Anastasios Delopoulos |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4e9104bc0664484dbf31156c7c675e0e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Assessment of real life eating difficulties in Parkinson’s disease patients by measuring plate to mouth movement elongation with inertial sensors
por: Konstantinos Kyritsis, et al.
Publicado: (2021) -
An interpretable multiple-instance approach for the detection of referable diabetic retinopathy in fundus images
por: Alexandros Papadopoulos, et al.
Publicado: (2021) -
Fusion of Unobtrusive Sensing Solutions for Sprained Ankle Rehabilitation Exercises Monitoring in Home Environments
por: Idongesit Ekerete, et al.
Publicado: (2021) -
Unobtrusive Nocturnal Heartbeat Monitoring by a Ballistocardiographic Sensor in Patients with Sleep Disordered Breathing
por: Matthias Daniel Zink, et al.
Publicado: (2017) -
Deep Learning Predicts Heart Failure With Preserved, Mid-Range, and Reduced Left Ventricular Ejection Fraction From Patient Clinical Profiles
por: Mohanad Alkhodari, et al.
Publicado: (2021)