Supervised dimensionality reduction for big data

Biomedical measurements usually generate high-dimensional data where individual samples are classified in several categories. Vogelstein et al. propose a supervised dimensionality reduction method which estimates the low-dimensional data projection for classification and prediction in big datasets.

Guardado en:
Detalles Bibliográficos
Autores principales: Joshua T. Vogelstein, Eric W. Bridgeford, Minh Tang, Da Zheng, Christopher Douville, Randal Burns, Mauro Maggioni
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/4e96486444d04876a7a760151e1835c7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Biomedical measurements usually generate high-dimensional data where individual samples are classified in several categories. Vogelstein et al. propose a supervised dimensionality reduction method which estimates the low-dimensional data projection for classification and prediction in big datasets.