Supervised dimensionality reduction for big data

Biomedical measurements usually generate high-dimensional data where individual samples are classified in several categories. Vogelstein et al. propose a supervised dimensionality reduction method which estimates the low-dimensional data projection for classification and prediction in big datasets.

Guardado en:
Detalles Bibliográficos
Autores principales: Joshua T. Vogelstein, Eric W. Bridgeford, Minh Tang, Da Zheng, Christopher Douville, Randal Burns, Mauro Maggioni
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/4e96486444d04876a7a760151e1835c7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4e96486444d04876a7a760151e1835c7
record_format dspace
spelling oai:doaj.org-article:4e96486444d04876a7a760151e1835c72021-12-02T16:51:25ZSupervised dimensionality reduction for big data10.1038/s41467-021-23102-22041-1723https://doaj.org/article/4e96486444d04876a7a760151e1835c72021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23102-2https://doaj.org/toc/2041-1723Biomedical measurements usually generate high-dimensional data where individual samples are classified in several categories. Vogelstein et al. propose a supervised dimensionality reduction method which estimates the low-dimensional data projection for classification and prediction in big datasets.Joshua T. VogelsteinEric W. BridgefordMinh TangDa ZhengChristopher DouvilleRandal BurnsMauro MaggioniNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Joshua T. Vogelstein
Eric W. Bridgeford
Minh Tang
Da Zheng
Christopher Douville
Randal Burns
Mauro Maggioni
Supervised dimensionality reduction for big data
description Biomedical measurements usually generate high-dimensional data where individual samples are classified in several categories. Vogelstein et al. propose a supervised dimensionality reduction method which estimates the low-dimensional data projection for classification and prediction in big datasets.
format article
author Joshua T. Vogelstein
Eric W. Bridgeford
Minh Tang
Da Zheng
Christopher Douville
Randal Burns
Mauro Maggioni
author_facet Joshua T. Vogelstein
Eric W. Bridgeford
Minh Tang
Da Zheng
Christopher Douville
Randal Burns
Mauro Maggioni
author_sort Joshua T. Vogelstein
title Supervised dimensionality reduction for big data
title_short Supervised dimensionality reduction for big data
title_full Supervised dimensionality reduction for big data
title_fullStr Supervised dimensionality reduction for big data
title_full_unstemmed Supervised dimensionality reduction for big data
title_sort supervised dimensionality reduction for big data
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/4e96486444d04876a7a760151e1835c7
work_keys_str_mv AT joshuatvogelstein superviseddimensionalityreductionforbigdata
AT ericwbridgeford superviseddimensionalityreductionforbigdata
AT minhtang superviseddimensionalityreductionforbigdata
AT dazheng superviseddimensionalityreductionforbigdata
AT christopherdouville superviseddimensionalityreductionforbigdata
AT randalburns superviseddimensionalityreductionforbigdata
AT mauromaggioni superviseddimensionalityreductionforbigdata
_version_ 1718382975923519488