Supervised dimensionality reduction for big data
Biomedical measurements usually generate high-dimensional data where individual samples are classified in several categories. Vogelstein et al. propose a supervised dimensionality reduction method which estimates the low-dimensional data projection for classification and prediction in big datasets.
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4e96486444d04876a7a760151e1835c7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4e96486444d04876a7a760151e1835c7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4e96486444d04876a7a760151e1835c72021-12-02T16:51:25ZSupervised dimensionality reduction for big data10.1038/s41467-021-23102-22041-1723https://doaj.org/article/4e96486444d04876a7a760151e1835c72021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23102-2https://doaj.org/toc/2041-1723Biomedical measurements usually generate high-dimensional data where individual samples are classified in several categories. Vogelstein et al. propose a supervised dimensionality reduction method which estimates the low-dimensional data projection for classification and prediction in big datasets.Joshua T. VogelsteinEric W. BridgefordMinh TangDa ZhengChristopher DouvilleRandal BurnsMauro MaggioniNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Joshua T. Vogelstein Eric W. Bridgeford Minh Tang Da Zheng Christopher Douville Randal Burns Mauro Maggioni Supervised dimensionality reduction for big data |
description |
Biomedical measurements usually generate high-dimensional data where individual samples are classified in several categories. Vogelstein et al. propose a supervised dimensionality reduction method which estimates the low-dimensional data projection for classification and prediction in big datasets. |
format |
article |
author |
Joshua T. Vogelstein Eric W. Bridgeford Minh Tang Da Zheng Christopher Douville Randal Burns Mauro Maggioni |
author_facet |
Joshua T. Vogelstein Eric W. Bridgeford Minh Tang Da Zheng Christopher Douville Randal Burns Mauro Maggioni |
author_sort |
Joshua T. Vogelstein |
title |
Supervised dimensionality reduction for big data |
title_short |
Supervised dimensionality reduction for big data |
title_full |
Supervised dimensionality reduction for big data |
title_fullStr |
Supervised dimensionality reduction for big data |
title_full_unstemmed |
Supervised dimensionality reduction for big data |
title_sort |
supervised dimensionality reduction for big data |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/4e96486444d04876a7a760151e1835c7 |
work_keys_str_mv |
AT joshuatvogelstein superviseddimensionalityreductionforbigdata AT ericwbridgeford superviseddimensionalityreductionforbigdata AT minhtang superviseddimensionalityreductionforbigdata AT dazheng superviseddimensionalityreductionforbigdata AT christopherdouville superviseddimensionalityreductionforbigdata AT randalburns superviseddimensionalityreductionforbigdata AT mauromaggioni superviseddimensionalityreductionforbigdata |
_version_ |
1718382975923519488 |