Supervised dimensionality reduction for big data
Biomedical measurements usually generate high-dimensional data where individual samples are classified in several categories. Vogelstein et al. propose a supervised dimensionality reduction method which estimates the low-dimensional data projection for classification and prediction in big datasets.
Guardado en:
Autores principales: | Joshua T. Vogelstein, Eric W. Bridgeford, Minh Tang, Da Zheng, Christopher Douville, Randal Burns, Mauro Maggioni |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4e96486444d04876a7a760151e1835c7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
New approch of opinion analysis from big social data environment using a supervised machine learning algirithm
por: Saidi Wiam, et al.
Publicado: (2021) -
Network Intrusion Detection Systems Using Supervised Machine Learning Classification and Dimensionality Reduction Techniques: A Systematic Review
por: Zein Ashi, et al.
Publicado: (2021) -
Big data : para seguridad privada /
por: González Nogalez, Luis
Publicado: (2016) -
Three-Dimensional Structure Analysis of Urban Landscape Based on Big Data Technology and Digital Technology
por: Xiaozhou Yang, et al.
Publicado: (2021) -
With Big Data Comes Big Responsibilities for Science Equity Research
por: Cissy J. Ballen, et al.
Publicado: (2019)