Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer’s disease
Abstract Background Although convolutional neural networks (CNNs) achieve high diagnostic accuracy for detecting Alzheimer’s disease (AD) dementia based on magnetic resonance imaging (MRI) scans, they are not yet applied in clinical routine. One important reason for this is a lack of model comprehen...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4ea07e2a7a2f4319ab977e9fcdcd6e3d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4ea07e2a7a2f4319ab977e9fcdcd6e3d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4ea07e2a7a2f4319ab977e9fcdcd6e3d2021-11-28T12:38:24ZImproving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer’s disease10.1186/s13195-021-00924-21758-9193https://doaj.org/article/4ea07e2a7a2f4319ab977e9fcdcd6e3d2021-11-01T00:00:00Zhttps://doi.org/10.1186/s13195-021-00924-2https://doaj.org/toc/1758-9193Abstract Background Although convolutional neural networks (CNNs) achieve high diagnostic accuracy for detecting Alzheimer’s disease (AD) dementia based on magnetic resonance imaging (MRI) scans, they are not yet applied in clinical routine. One important reason for this is a lack of model comprehensibility. Recently developed visualization methods for deriving CNN relevance maps may help to fill this gap as they allow the visualization of key input image features that drive the decision of the model. We investigated whether models with higher accuracy also rely more on discriminative brain regions predefined by prior knowledge. Methods We trained a CNN for the detection of AD in N = 663 T1-weighted MRI scans of patients with dementia and amnestic mild cognitive impairment (MCI) and verified the accuracy of the models via cross-validation and in three independent samples including in total N = 1655 cases. We evaluated the association of relevance scores and hippocampus volume to validate the clinical utility of this approach. To improve model comprehensibility, we implemented an interactive visualization of 3D CNN relevance maps, thereby allowing intuitive model inspection. Results Across the three independent datasets, group separation showed high accuracy for AD dementia versus controls (AUC ≥ 0.91) and moderate accuracy for amnestic MCI versus controls (AUC ≈ 0.74). Relevance maps indicated that hippocampal atrophy was considered the most informative factor for AD detection, with additional contributions from atrophy in other cortical and subcortical regions. Relevance scores within the hippocampus were highly correlated with hippocampal volumes (Pearson’s r ≈ −0.86, p < 0.001). Conclusion The relevance maps highlighted atrophy in regions that we had hypothesized a priori. This strengthens the comprehensibility of the CNN models, which were trained in a purely data-driven manner based on the scans and diagnosis labels. The high hippocampus relevance scores as well as the high performance achieved in independent samples support the validity of the CNN models in the detection of AD-related MRI abnormalities. The presented data-driven and hypothesis-free CNN modeling approach might provide a useful tool to automatically derive discriminative features for complex diagnostic tasks where clear clinical criteria are still missing, for instance for the differential diagnosis between various types of dementia.Martin DyrbaMoritz HanzigSlawek AltensteinSebastian BaderTommaso BallariniFrederic BrosseronKatharina BuergerDaniel CantréPeter DechentLaura DobischEmrah DüzelMichael EwersKlaus FliessbachWenzel GlanzJohn-Dylan HaynesMichael T. HenekaDaniel JanowitzDeniz B. KelesIngo KilimannChristoph LaskeFranziska MaierCoraline D. MetzgerMatthias H. MunkRobert PerneczkyOliver PetersLukas PreisJosef PrillerBoris RauchmannNina RoyKlaus SchefflerAnja SchneiderBjörn H. SchottAnnika SpottkeEike J. SpruthMarc-André WeberBirgit Ertl-WagnerMichael WagnerJens WiltfangFrank JessenStefan J. Teipelfor the ADNI, AIBL, DELCODE study groupsBMCarticleAlzheimer’s diseaseDeep learningConvolutional neural networkMRILayer-wise relevance propagationNeurosciences. Biological psychiatry. NeuropsychiatryRC321-571Neurology. Diseases of the nervous systemRC346-429ENAlzheimer’s Research & Therapy, Vol 13, Iss 1, Pp 1-18 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Alzheimer’s disease Deep learning Convolutional neural network MRI Layer-wise relevance propagation Neurosciences. Biological psychiatry. Neuropsychiatry RC321-571 Neurology. Diseases of the nervous system RC346-429 |
spellingShingle |
Alzheimer’s disease Deep learning Convolutional neural network MRI Layer-wise relevance propagation Neurosciences. Biological psychiatry. Neuropsychiatry RC321-571 Neurology. Diseases of the nervous system RC346-429 Martin Dyrba Moritz Hanzig Slawek Altenstein Sebastian Bader Tommaso Ballarini Frederic Brosseron Katharina Buerger Daniel Cantré Peter Dechent Laura Dobisch Emrah Düzel Michael Ewers Klaus Fliessbach Wenzel Glanz John-Dylan Haynes Michael T. Heneka Daniel Janowitz Deniz B. Keles Ingo Kilimann Christoph Laske Franziska Maier Coraline D. Metzger Matthias H. Munk Robert Perneczky Oliver Peters Lukas Preis Josef Priller Boris Rauchmann Nina Roy Klaus Scheffler Anja Schneider Björn H. Schott Annika Spottke Eike J. Spruth Marc-André Weber Birgit Ertl-Wagner Michael Wagner Jens Wiltfang Frank Jessen Stefan J. Teipel for the ADNI, AIBL, DELCODE study groups Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer’s disease |
description |
Abstract Background Although convolutional neural networks (CNNs) achieve high diagnostic accuracy for detecting Alzheimer’s disease (AD) dementia based on magnetic resonance imaging (MRI) scans, they are not yet applied in clinical routine. One important reason for this is a lack of model comprehensibility. Recently developed visualization methods for deriving CNN relevance maps may help to fill this gap as they allow the visualization of key input image features that drive the decision of the model. We investigated whether models with higher accuracy also rely more on discriminative brain regions predefined by prior knowledge. Methods We trained a CNN for the detection of AD in N = 663 T1-weighted MRI scans of patients with dementia and amnestic mild cognitive impairment (MCI) and verified the accuracy of the models via cross-validation and in three independent samples including in total N = 1655 cases. We evaluated the association of relevance scores and hippocampus volume to validate the clinical utility of this approach. To improve model comprehensibility, we implemented an interactive visualization of 3D CNN relevance maps, thereby allowing intuitive model inspection. Results Across the three independent datasets, group separation showed high accuracy for AD dementia versus controls (AUC ≥ 0.91) and moderate accuracy for amnestic MCI versus controls (AUC ≈ 0.74). Relevance maps indicated that hippocampal atrophy was considered the most informative factor for AD detection, with additional contributions from atrophy in other cortical and subcortical regions. Relevance scores within the hippocampus were highly correlated with hippocampal volumes (Pearson’s r ≈ −0.86, p < 0.001). Conclusion The relevance maps highlighted atrophy in regions that we had hypothesized a priori. This strengthens the comprehensibility of the CNN models, which were trained in a purely data-driven manner based on the scans and diagnosis labels. The high hippocampus relevance scores as well as the high performance achieved in independent samples support the validity of the CNN models in the detection of AD-related MRI abnormalities. The presented data-driven and hypothesis-free CNN modeling approach might provide a useful tool to automatically derive discriminative features for complex diagnostic tasks where clear clinical criteria are still missing, for instance for the differential diagnosis between various types of dementia. |
format |
article |
author |
Martin Dyrba Moritz Hanzig Slawek Altenstein Sebastian Bader Tommaso Ballarini Frederic Brosseron Katharina Buerger Daniel Cantré Peter Dechent Laura Dobisch Emrah Düzel Michael Ewers Klaus Fliessbach Wenzel Glanz John-Dylan Haynes Michael T. Heneka Daniel Janowitz Deniz B. Keles Ingo Kilimann Christoph Laske Franziska Maier Coraline D. Metzger Matthias H. Munk Robert Perneczky Oliver Peters Lukas Preis Josef Priller Boris Rauchmann Nina Roy Klaus Scheffler Anja Schneider Björn H. Schott Annika Spottke Eike J. Spruth Marc-André Weber Birgit Ertl-Wagner Michael Wagner Jens Wiltfang Frank Jessen Stefan J. Teipel for the ADNI, AIBL, DELCODE study groups |
author_facet |
Martin Dyrba Moritz Hanzig Slawek Altenstein Sebastian Bader Tommaso Ballarini Frederic Brosseron Katharina Buerger Daniel Cantré Peter Dechent Laura Dobisch Emrah Düzel Michael Ewers Klaus Fliessbach Wenzel Glanz John-Dylan Haynes Michael T. Heneka Daniel Janowitz Deniz B. Keles Ingo Kilimann Christoph Laske Franziska Maier Coraline D. Metzger Matthias H. Munk Robert Perneczky Oliver Peters Lukas Preis Josef Priller Boris Rauchmann Nina Roy Klaus Scheffler Anja Schneider Björn H. Schott Annika Spottke Eike J. Spruth Marc-André Weber Birgit Ertl-Wagner Michael Wagner Jens Wiltfang Frank Jessen Stefan J. Teipel for the ADNI, AIBL, DELCODE study groups |
author_sort |
Martin Dyrba |
title |
Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer’s disease |
title_short |
Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer’s disease |
title_full |
Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer’s disease |
title_fullStr |
Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer’s disease |
title_full_unstemmed |
Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer’s disease |
title_sort |
improving 3d convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in alzheimer’s disease |
publisher |
BMC |
publishDate |
2021 |
url |
https://doaj.org/article/4ea07e2a7a2f4319ab977e9fcdcd6e3d |
work_keys_str_mv |
AT martindyrba improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT moritzhanzig improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT slawekaltenstein improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT sebastianbader improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT tommasoballarini improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT fredericbrosseron improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT katharinabuerger improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT danielcantre improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT peterdechent improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT lauradobisch improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT emrahduzel improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT michaelewers improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT klausfliessbach improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT wenzelglanz improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT johndylanhaynes improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT michaeltheneka improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT danieljanowitz improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT denizbkeles improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT ingokilimann improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT christophlaske improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT franziskamaier improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT coralinedmetzger improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT matthiashmunk improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT robertperneczky improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT oliverpeters improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT lukaspreis improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT josefpriller improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT borisrauchmann improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT ninaroy improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT klausscheffler improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT anjaschneider improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT bjornhschott improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT annikaspottke improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT eikejspruth improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT marcandreweber improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT birgitertlwagner improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT michaelwagner improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT jenswiltfang improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT frankjessen improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT stefanjteipel improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT fortheadniaibldelcodestudygroups improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease |
_version_ |
1718407888543678464 |