Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer’s disease

Abstract Background Although convolutional neural networks (CNNs) achieve high diagnostic accuracy for detecting Alzheimer’s disease (AD) dementia based on magnetic resonance imaging (MRI) scans, they are not yet applied in clinical routine. One important reason for this is a lack of model comprehen...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Martin Dyrba, Moritz Hanzig, Slawek Altenstein, Sebastian Bader, Tommaso Ballarini, Frederic Brosseron, Katharina Buerger, Daniel Cantré, Peter Dechent, Laura Dobisch, Emrah Düzel, Michael Ewers, Klaus Fliessbach, Wenzel Glanz, John-Dylan Haynes, Michael T. Heneka, Daniel Janowitz, Deniz B. Keles, Ingo Kilimann, Christoph Laske, Franziska Maier, Coraline D. Metzger, Matthias H. Munk, Robert Perneczky, Oliver Peters, Lukas Preis, Josef Priller, Boris Rauchmann, Nina Roy, Klaus Scheffler, Anja Schneider, Björn H. Schott, Annika Spottke, Eike J. Spruth, Marc-André Weber, Birgit Ertl-Wagner, Michael Wagner, Jens Wiltfang, Frank Jessen, Stefan J. Teipel, for the ADNI, AIBL, DELCODE study groups
Formato: article
Lenguaje:EN
Publicado: BMC 2021
Materias:
MRI
Acceso en línea:https://doaj.org/article/4ea07e2a7a2f4319ab977e9fcdcd6e3d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4ea07e2a7a2f4319ab977e9fcdcd6e3d
record_format dspace
spelling oai:doaj.org-article:4ea07e2a7a2f4319ab977e9fcdcd6e3d2021-11-28T12:38:24ZImproving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer’s disease10.1186/s13195-021-00924-21758-9193https://doaj.org/article/4ea07e2a7a2f4319ab977e9fcdcd6e3d2021-11-01T00:00:00Zhttps://doi.org/10.1186/s13195-021-00924-2https://doaj.org/toc/1758-9193Abstract Background Although convolutional neural networks (CNNs) achieve high diagnostic accuracy for detecting Alzheimer’s disease (AD) dementia based on magnetic resonance imaging (MRI) scans, they are not yet applied in clinical routine. One important reason for this is a lack of model comprehensibility. Recently developed visualization methods for deriving CNN relevance maps may help to fill this gap as they allow the visualization of key input image features that drive the decision of the model. We investigated whether models with higher accuracy also rely more on discriminative brain regions predefined by prior knowledge. Methods We trained a CNN for the detection of AD in N = 663 T1-weighted MRI scans of patients with dementia and amnestic mild cognitive impairment (MCI) and verified the accuracy of the models via cross-validation and in three independent samples including in total N = 1655 cases. We evaluated the association of relevance scores and hippocampus volume to validate the clinical utility of this approach. To improve model comprehensibility, we implemented an interactive visualization of 3D CNN relevance maps, thereby allowing intuitive model inspection. Results Across the three independent datasets, group separation showed high accuracy for AD dementia versus controls (AUC ≥ 0.91) and moderate accuracy for amnestic MCI versus controls (AUC ≈ 0.74). Relevance maps indicated that hippocampal atrophy was considered the most informative factor for AD detection, with additional contributions from atrophy in other cortical and subcortical regions. Relevance scores within the hippocampus were highly correlated with hippocampal volumes (Pearson’s r ≈ −0.86, p < 0.001). Conclusion The relevance maps highlighted atrophy in regions that we had hypothesized a priori. This strengthens the comprehensibility of the CNN models, which were trained in a purely data-driven manner based on the scans and diagnosis labels. The high hippocampus relevance scores as well as the high performance achieved in independent samples support the validity of the CNN models in the detection of AD-related MRI abnormalities. The presented data-driven and hypothesis-free CNN modeling approach might provide a useful tool to automatically derive discriminative features for complex diagnostic tasks where clear clinical criteria are still missing, for instance for the differential diagnosis between various types of dementia.Martin DyrbaMoritz HanzigSlawek AltensteinSebastian BaderTommaso BallariniFrederic BrosseronKatharina BuergerDaniel CantréPeter DechentLaura DobischEmrah DüzelMichael EwersKlaus FliessbachWenzel GlanzJohn-Dylan HaynesMichael T. HenekaDaniel JanowitzDeniz B. KelesIngo KilimannChristoph LaskeFranziska MaierCoraline D. MetzgerMatthias H. MunkRobert PerneczkyOliver PetersLukas PreisJosef PrillerBoris RauchmannNina RoyKlaus SchefflerAnja SchneiderBjörn H. SchottAnnika SpottkeEike J. SpruthMarc-André WeberBirgit Ertl-WagnerMichael WagnerJens WiltfangFrank JessenStefan J. Teipelfor the ADNI, AIBL, DELCODE study groupsBMCarticleAlzheimer’s diseaseDeep learningConvolutional neural networkMRILayer-wise relevance propagationNeurosciences. Biological psychiatry. NeuropsychiatryRC321-571Neurology. Diseases of the nervous systemRC346-429ENAlzheimer’s Research & Therapy, Vol 13, Iss 1, Pp 1-18 (2021)
institution DOAJ
collection DOAJ
language EN
topic Alzheimer’s disease
Deep learning
Convolutional neural network
MRI
Layer-wise relevance propagation
Neurosciences. Biological psychiatry. Neuropsychiatry
RC321-571
Neurology. Diseases of the nervous system
RC346-429
spellingShingle Alzheimer’s disease
Deep learning
Convolutional neural network
MRI
Layer-wise relevance propagation
Neurosciences. Biological psychiatry. Neuropsychiatry
RC321-571
Neurology. Diseases of the nervous system
RC346-429
Martin Dyrba
Moritz Hanzig
Slawek Altenstein
Sebastian Bader
Tommaso Ballarini
Frederic Brosseron
Katharina Buerger
Daniel Cantré
Peter Dechent
Laura Dobisch
Emrah Düzel
Michael Ewers
Klaus Fliessbach
Wenzel Glanz
John-Dylan Haynes
Michael T. Heneka
Daniel Janowitz
Deniz B. Keles
Ingo Kilimann
Christoph Laske
Franziska Maier
Coraline D. Metzger
Matthias H. Munk
Robert Perneczky
Oliver Peters
Lukas Preis
Josef Priller
Boris Rauchmann
Nina Roy
Klaus Scheffler
Anja Schneider
Björn H. Schott
Annika Spottke
Eike J. Spruth
Marc-André Weber
Birgit Ertl-Wagner
Michael Wagner
Jens Wiltfang
Frank Jessen
Stefan J. Teipel
for the ADNI, AIBL, DELCODE study groups
Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer’s disease
description Abstract Background Although convolutional neural networks (CNNs) achieve high diagnostic accuracy for detecting Alzheimer’s disease (AD) dementia based on magnetic resonance imaging (MRI) scans, they are not yet applied in clinical routine. One important reason for this is a lack of model comprehensibility. Recently developed visualization methods for deriving CNN relevance maps may help to fill this gap as they allow the visualization of key input image features that drive the decision of the model. We investigated whether models with higher accuracy also rely more on discriminative brain regions predefined by prior knowledge. Methods We trained a CNN for the detection of AD in N = 663 T1-weighted MRI scans of patients with dementia and amnestic mild cognitive impairment (MCI) and verified the accuracy of the models via cross-validation and in three independent samples including in total N = 1655 cases. We evaluated the association of relevance scores and hippocampus volume to validate the clinical utility of this approach. To improve model comprehensibility, we implemented an interactive visualization of 3D CNN relevance maps, thereby allowing intuitive model inspection. Results Across the three independent datasets, group separation showed high accuracy for AD dementia versus controls (AUC ≥ 0.91) and moderate accuracy for amnestic MCI versus controls (AUC ≈ 0.74). Relevance maps indicated that hippocampal atrophy was considered the most informative factor for AD detection, with additional contributions from atrophy in other cortical and subcortical regions. Relevance scores within the hippocampus were highly correlated with hippocampal volumes (Pearson’s r ≈ −0.86, p < 0.001). Conclusion The relevance maps highlighted atrophy in regions that we had hypothesized a priori. This strengthens the comprehensibility of the CNN models, which were trained in a purely data-driven manner based on the scans and diagnosis labels. The high hippocampus relevance scores as well as the high performance achieved in independent samples support the validity of the CNN models in the detection of AD-related MRI abnormalities. The presented data-driven and hypothesis-free CNN modeling approach might provide a useful tool to automatically derive discriminative features for complex diagnostic tasks where clear clinical criteria are still missing, for instance for the differential diagnosis between various types of dementia.
format article
author Martin Dyrba
Moritz Hanzig
Slawek Altenstein
Sebastian Bader
Tommaso Ballarini
Frederic Brosseron
Katharina Buerger
Daniel Cantré
Peter Dechent
Laura Dobisch
Emrah Düzel
Michael Ewers
Klaus Fliessbach
Wenzel Glanz
John-Dylan Haynes
Michael T. Heneka
Daniel Janowitz
Deniz B. Keles
Ingo Kilimann
Christoph Laske
Franziska Maier
Coraline D. Metzger
Matthias H. Munk
Robert Perneczky
Oliver Peters
Lukas Preis
Josef Priller
Boris Rauchmann
Nina Roy
Klaus Scheffler
Anja Schneider
Björn H. Schott
Annika Spottke
Eike J. Spruth
Marc-André Weber
Birgit Ertl-Wagner
Michael Wagner
Jens Wiltfang
Frank Jessen
Stefan J. Teipel
for the ADNI, AIBL, DELCODE study groups
author_facet Martin Dyrba
Moritz Hanzig
Slawek Altenstein
Sebastian Bader
Tommaso Ballarini
Frederic Brosseron
Katharina Buerger
Daniel Cantré
Peter Dechent
Laura Dobisch
Emrah Düzel
Michael Ewers
Klaus Fliessbach
Wenzel Glanz
John-Dylan Haynes
Michael T. Heneka
Daniel Janowitz
Deniz B. Keles
Ingo Kilimann
Christoph Laske
Franziska Maier
Coraline D. Metzger
Matthias H. Munk
Robert Perneczky
Oliver Peters
Lukas Preis
Josef Priller
Boris Rauchmann
Nina Roy
Klaus Scheffler
Anja Schneider
Björn H. Schott
Annika Spottke
Eike J. Spruth
Marc-André Weber
Birgit Ertl-Wagner
Michael Wagner
Jens Wiltfang
Frank Jessen
Stefan J. Teipel
for the ADNI, AIBL, DELCODE study groups
author_sort Martin Dyrba
title Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer’s disease
title_short Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer’s disease
title_full Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer’s disease
title_fullStr Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer’s disease
title_full_unstemmed Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer’s disease
title_sort improving 3d convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in alzheimer’s disease
publisher BMC
publishDate 2021
url https://doaj.org/article/4ea07e2a7a2f4319ab977e9fcdcd6e3d
work_keys_str_mv AT martindyrba improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT moritzhanzig improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT slawekaltenstein improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT sebastianbader improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT tommasoballarini improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT fredericbrosseron improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT katharinabuerger improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT danielcantre improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT peterdechent improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT lauradobisch improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT emrahduzel improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT michaelewers improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT klausfliessbach improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT wenzelglanz improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT johndylanhaynes improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT michaeltheneka improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT danieljanowitz improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT denizbkeles improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT ingokilimann improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT christophlaske improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT franziskamaier improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT coralinedmetzger improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT matthiashmunk improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT robertperneczky improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT oliverpeters improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT lukaspreis improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT josefpriller improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT borisrauchmann improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT ninaroy improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT klausscheffler improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT anjaschneider improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT bjornhschott improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT annikaspottke improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT eikejspruth improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT marcandreweber improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT birgitertlwagner improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT michaelwagner improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT jenswiltfang improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT frankjessen improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT stefanjteipel improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
AT fortheadniaibldelcodestudygroups improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease
_version_ 1718407888543678464