Deep learning-based fully automated Z-axis coverage range definition from scout scans to eliminate overscanning in chest CT imaging
Abstract Background Despite the prevalence of chest CT in the clinic, concerns about unoptimized protocols delivering high radiation doses to patients still remain. This study aimed to assess the additional radiation dose associated with overscanning in chest CT and to develop an automated deep lear...
Guardado en:
Autores principales: | Yazdan Salimi, Isaac Shiri, Azadeh Akhavanallaf, Zahra Mansouri, Abdollah Saberi Manesh, Amirhossein Sanaat, Masoumeh Pakbin, Dariush Askari, Saleh Sandoughdaran, Ehsan Sharifipour, Hossein Arabi, Habib Zaidi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4ea5388abff241518506601516e52064 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
DeepTOFSino: A deep learning model for synthesizing full-dose time-of-flight bin sinograms from their corresponding low-dose sinograms
por: Amirhossein Sanaat, et al.
Publicado: (2021) -
La carrera académica del Profesor Clínico de Medicina
por: Sánchez D,Ignacio
Publicado: (2009) -
Using a Blur Metric to Estimate Linear Motion Blur Parameters
por: Taiebeh Askari Javaran, et al.
Publicado: (2021) -
Acerca de los errores en medicina
por: Besio R,Mauricio
Publicado: (2009) -
Errores en Medicina
por: Rosselot J,Eduardo
Publicado: (2001)