Toward a universal decoder of linguistic meaning from brain activation

Previous work decoding linguistic meaning from imaging data has generally been limited to a small number of semantic categories. Here, authors show that a decoder trained on neuroimaging data of single concepts sampling the semantic space can robustly decode meanings of semantically diverse new sent...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Francisco Pereira, Bin Lou, Brianna Pritchett, Samuel Ritter, Samuel J. Gershman, Nancy Kanwisher, Matthew Botvinick, Evelina Fedorenko
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/4eab538b394d41aca61a5cfdc4d5c391
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Previous work decoding linguistic meaning from imaging data has generally been limited to a small number of semantic categories. Here, authors show that a decoder trained on neuroimaging data of single concepts sampling the semantic space can robustly decode meanings of semantically diverse new sentences with topics not encountered during training.