Toward a universal decoder of linguistic meaning from brain activation
Previous work decoding linguistic meaning from imaging data has generally been limited to a small number of semantic categories. Here, authors show that a decoder trained on neuroimaging data of single concepts sampling the semantic space can robustly decode meanings of semantically diverse new sent...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4eab538b394d41aca61a5cfdc4d5c391 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4eab538b394d41aca61a5cfdc4d5c391 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4eab538b394d41aca61a5cfdc4d5c3912021-12-02T15:33:55ZToward a universal decoder of linguistic meaning from brain activation10.1038/s41467-018-03068-42041-1723https://doaj.org/article/4eab538b394d41aca61a5cfdc4d5c3912018-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-03068-4https://doaj.org/toc/2041-1723Previous work decoding linguistic meaning from imaging data has generally been limited to a small number of semantic categories. Here, authors show that a decoder trained on neuroimaging data of single concepts sampling the semantic space can robustly decode meanings of semantically diverse new sentences with topics not encountered during training.Francisco PereiraBin LouBrianna PritchettSamuel RitterSamuel J. GershmanNancy KanwisherMatthew BotvinickEvelina FedorenkoNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-13 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Francisco Pereira Bin Lou Brianna Pritchett Samuel Ritter Samuel J. Gershman Nancy Kanwisher Matthew Botvinick Evelina Fedorenko Toward a universal decoder of linguistic meaning from brain activation |
description |
Previous work decoding linguistic meaning from imaging data has generally been limited to a small number of semantic categories. Here, authors show that a decoder trained on neuroimaging data of single concepts sampling the semantic space can robustly decode meanings of semantically diverse new sentences with topics not encountered during training. |
format |
article |
author |
Francisco Pereira Bin Lou Brianna Pritchett Samuel Ritter Samuel J. Gershman Nancy Kanwisher Matthew Botvinick Evelina Fedorenko |
author_facet |
Francisco Pereira Bin Lou Brianna Pritchett Samuel Ritter Samuel J. Gershman Nancy Kanwisher Matthew Botvinick Evelina Fedorenko |
author_sort |
Francisco Pereira |
title |
Toward a universal decoder of linguistic meaning from brain activation |
title_short |
Toward a universal decoder of linguistic meaning from brain activation |
title_full |
Toward a universal decoder of linguistic meaning from brain activation |
title_fullStr |
Toward a universal decoder of linguistic meaning from brain activation |
title_full_unstemmed |
Toward a universal decoder of linguistic meaning from brain activation |
title_sort |
toward a universal decoder of linguistic meaning from brain activation |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/4eab538b394d41aca61a5cfdc4d5c391 |
work_keys_str_mv |
AT franciscopereira towardauniversaldecoderoflinguisticmeaningfrombrainactivation AT binlou towardauniversaldecoderoflinguisticmeaningfrombrainactivation AT briannapritchett towardauniversaldecoderoflinguisticmeaningfrombrainactivation AT samuelritter towardauniversaldecoderoflinguisticmeaningfrombrainactivation AT samueljgershman towardauniversaldecoderoflinguisticmeaningfrombrainactivation AT nancykanwisher towardauniversaldecoderoflinguisticmeaningfrombrainactivation AT matthewbotvinick towardauniversaldecoderoflinguisticmeaningfrombrainactivation AT evelinafedorenko towardauniversaldecoderoflinguisticmeaningfrombrainactivation |
_version_ |
1718386958950989824 |