USA Crop Yield Estimation with MODIS NDVI: Are Remotely Sensed Models Better than Simple Trend Analyses?
Crop yield forecasting is performed monthly during the growing season by the United States Department of Agriculture’s National Agricultural Statistics Service. The underpinnings are long-established probability surveys reliant on farmers’ feedback in parallel with biophysical measurements. Over the...
Guardado en:
Autores principales: | David M. Johnson, Arthur Rosales, Richard Mueller, Curt Reynolds, Ronald Frantz, Assaf Anyamba, Ed Pak, Compton Tucker |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4eae7f60a3064fe4bd8fbe378a037eb7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Short and Medium-Term Prediction of Winter Wheat NDVI Based on the DTW–LSTM Combination Method and MODIS Time Series Data
por: Fa Zhao, et al.
Publicado: (2021) -
Limitations of Remote Sensing in Assessing Vegetation Damage Due to the 2019–2021 Desert Locust Upsurge
por: Emily C. Adams, et al.
Publicado: (2021) -
Corrigendum: Limitations of Remote Sensing in Assessing Vegetation Damage Due to the 2019–2021 Desert Locust Upsurge
por: Emily C. Adams, et al.
Publicado: (2021) -
Efectos de la invasión del ligustro, Ligustrum lucidum, en la dinámica hídrica de las Yungas del noroeste Argentino
por: Zamora Nasca,Lucía, et al.
Publicado: (2014) -
The European Forest Condition Monitor: Using Remotely Sensed Forest Greenness to Identify Hot Spots of Forest Decline
por: Allan Buras, et al.
Publicado: (2021)