Identification and characterization of 63 MicroRNAs in the Asian seabass Lates calcarifer.

<h4>Background</h4>MicroRNAs (miRNAs) play an important role in the regulation of many fundamental biological processes. So far miRNAs have been only identified in a few fish species, although there are over 30,000 fish species living under different environmental conditions on the earth...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jun Hong Xia, Xiao Ping He, Zhi Yi Bai, Gen Hua Yue
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2011
Materias:
R
Q
Acceso en línea:https://doaj.org/article/4ec948b9482c4763b34eea8b68bad163
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:<h4>Background</h4>MicroRNAs (miRNAs) play an important role in the regulation of many fundamental biological processes. So far miRNAs have been only identified in a few fish species, although there are over 30,000 fish species living under different environmental conditions on the earth. Here, we described an approach to identify conserved miRNAs and characterized their expression patterns in different tissues for the first time in a food fish species Asian seabass (Lates calcarifer).<h4>Methodology/principal findings</h4>By combining a bioinformatics analysis with an approach of homolog-based PCR amplification and sequencing, 63 novel miRNAs belonging to 29 conserved miRNA families were identified. Of which, 59 miRNAs were conserved across 10-86 species (E value ≤ 10⁻⁴) and 4 miRNAs were conserved only in fish species. qRT-PCR analysis showed that miR-29, miR-103, miR-125 and several let-7 family members were strongly and ubiquitously expressed in all tissues tested. Interestingly, miR-1, miR-21, miR-183, miR-184 and miR-192 showed highly conserved tissue-specific expression patterns. Exposure of the Asian seabass to lipopolysaccharide (LPS) resulted in up-regulation of over 50% of the identified miRNAs in spleen suggesting the importance of the miRNAs in acute inflammatory immune responses.<h4>Conclusions/significance</h4>The approach used in this study is highly effective for identification of conserved miRNAs. The identification of 63 miRNAs and determination of the spatial expression patterns of these miRNAs are valuable resources for further studies on post-transcriptional gene regulation in Asian seabass and other fish species. Further identification of the target genes of these miRNAs would shed new light on their regulatory roles of microRNAs in fish.