Learning through ferroelectric domain dynamics in solid-state synapses
Accurate modelling of memristor dynamics is essential for the development of autonomous learning in artificial neural networks. Through a combined theoretical and experimental study of the polarization switching process in ferroelectric memristors, Boynet al. establish a model that enables learning...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4eca89cea8fb41d595066d4cec248c7a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Accurate modelling of memristor dynamics is essential for the development of autonomous learning in artificial neural networks. Through a combined theoretical and experimental study of the polarization switching process in ferroelectric memristors, Boynet al. establish a model that enables learning and retrieving patterns in a neural system. |
---|