Learning through ferroelectric domain dynamics in solid-state synapses

Accurate modelling of memristor dynamics is essential for the development of autonomous learning in artificial neural networks. Through a combined theoretical and experimental study of the polarization switching process in ferroelectric memristors, Boynet al. establish a model that enables learning...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sören Boyn, Julie Grollier, Gwendal Lecerf, Bin Xu, Nicolas Locatelli, Stéphane Fusil, Stéphanie Girod, Cécile Carrétéro, Karin Garcia, Stéphane Xavier, Jean Tomas, Laurent Bellaiche, Manuel Bibes, Agnès Barthélémy, Sylvain Saïghi, Vincent Garcia
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/4eca89cea8fb41d595066d4cec248c7a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Accurate modelling of memristor dynamics is essential for the development of autonomous learning in artificial neural networks. Through a combined theoretical and experimental study of the polarization switching process in ferroelectric memristors, Boynet al. establish a model that enables learning and retrieving patterns in a neural system.