Learning through ferroelectric domain dynamics in solid-state synapses
Accurate modelling of memristor dynamics is essential for the development of autonomous learning in artificial neural networks. Through a combined theoretical and experimental study of the polarization switching process in ferroelectric memristors, Boynet al. establish a model that enables learning...
Enregistré dans:
Auteurs principaux: | , , , , , , , , , , , , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/4eca89cea8fb41d595066d4cec248c7a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
id |
oai:doaj.org-article:4eca89cea8fb41d595066d4cec248c7a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4eca89cea8fb41d595066d4cec248c7a2021-12-02T14:42:00ZLearning through ferroelectric domain dynamics in solid-state synapses10.1038/ncomms147362041-1723https://doaj.org/article/4eca89cea8fb41d595066d4cec248c7a2017-04-01T00:00:00Zhttps://doi.org/10.1038/ncomms14736https://doaj.org/toc/2041-1723Accurate modelling of memristor dynamics is essential for the development of autonomous learning in artificial neural networks. Through a combined theoretical and experimental study of the polarization switching process in ferroelectric memristors, Boynet al. establish a model that enables learning and retrieving patterns in a neural system.Sören BoynJulie GrollierGwendal LecerfBin XuNicolas LocatelliStéphane FusilStéphanie GirodCécile CarrétéroKarin GarciaStéphane XavierJean TomasLaurent BellaicheManuel BibesAgnès BarthélémySylvain SaïghiVincent GarciaNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-7 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Sören Boyn Julie Grollier Gwendal Lecerf Bin Xu Nicolas Locatelli Stéphane Fusil Stéphanie Girod Cécile Carrétéro Karin Garcia Stéphane Xavier Jean Tomas Laurent Bellaiche Manuel Bibes Agnès Barthélémy Sylvain Saïghi Vincent Garcia Learning through ferroelectric domain dynamics in solid-state synapses |
description |
Accurate modelling of memristor dynamics is essential for the development of autonomous learning in artificial neural networks. Through a combined theoretical and experimental study of the polarization switching process in ferroelectric memristors, Boynet al. establish a model that enables learning and retrieving patterns in a neural system. |
format |
article |
author |
Sören Boyn Julie Grollier Gwendal Lecerf Bin Xu Nicolas Locatelli Stéphane Fusil Stéphanie Girod Cécile Carrétéro Karin Garcia Stéphane Xavier Jean Tomas Laurent Bellaiche Manuel Bibes Agnès Barthélémy Sylvain Saïghi Vincent Garcia |
author_facet |
Sören Boyn Julie Grollier Gwendal Lecerf Bin Xu Nicolas Locatelli Stéphane Fusil Stéphanie Girod Cécile Carrétéro Karin Garcia Stéphane Xavier Jean Tomas Laurent Bellaiche Manuel Bibes Agnès Barthélémy Sylvain Saïghi Vincent Garcia |
author_sort |
Sören Boyn |
title |
Learning through ferroelectric domain dynamics in solid-state synapses |
title_short |
Learning through ferroelectric domain dynamics in solid-state synapses |
title_full |
Learning through ferroelectric domain dynamics in solid-state synapses |
title_fullStr |
Learning through ferroelectric domain dynamics in solid-state synapses |
title_full_unstemmed |
Learning through ferroelectric domain dynamics in solid-state synapses |
title_sort |
learning through ferroelectric domain dynamics in solid-state synapses |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/4eca89cea8fb41d595066d4cec248c7a |
work_keys_str_mv |
AT sorenboyn learningthroughferroelectricdomaindynamicsinsolidstatesynapses AT juliegrollier learningthroughferroelectricdomaindynamicsinsolidstatesynapses AT gwendallecerf learningthroughferroelectricdomaindynamicsinsolidstatesynapses AT binxu learningthroughferroelectricdomaindynamicsinsolidstatesynapses AT nicolaslocatelli learningthroughferroelectricdomaindynamicsinsolidstatesynapses AT stephanefusil learningthroughferroelectricdomaindynamicsinsolidstatesynapses AT stephaniegirod learningthroughferroelectricdomaindynamicsinsolidstatesynapses AT cecilecarretero learningthroughferroelectricdomaindynamicsinsolidstatesynapses AT karingarcia learningthroughferroelectricdomaindynamicsinsolidstatesynapses AT stephanexavier learningthroughferroelectricdomaindynamicsinsolidstatesynapses AT jeantomas learningthroughferroelectricdomaindynamicsinsolidstatesynapses AT laurentbellaiche learningthroughferroelectricdomaindynamicsinsolidstatesynapses AT manuelbibes learningthroughferroelectricdomaindynamicsinsolidstatesynapses AT agnesbarthelemy learningthroughferroelectricdomaindynamicsinsolidstatesynapses AT sylvainsaighi learningthroughferroelectricdomaindynamicsinsolidstatesynapses AT vincentgarcia learningthroughferroelectricdomaindynamicsinsolidstatesynapses |
_version_ |
1718389807487385600 |