Learning through ferroelectric domain dynamics in solid-state synapses

Accurate modelling of memristor dynamics is essential for the development of autonomous learning in artificial neural networks. Through a combined theoretical and experimental study of the polarization switching process in ferroelectric memristors, Boynet al. establish a model that enables learning...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sören Boyn, Julie Grollier, Gwendal Lecerf, Bin Xu, Nicolas Locatelli, Stéphane Fusil, Stéphanie Girod, Cécile Carrétéro, Karin Garcia, Stéphane Xavier, Jean Tomas, Laurent Bellaiche, Manuel Bibes, Agnès Barthélémy, Sylvain Saïghi, Vincent Garcia
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/4eca89cea8fb41d595066d4cec248c7a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4eca89cea8fb41d595066d4cec248c7a
record_format dspace
spelling oai:doaj.org-article:4eca89cea8fb41d595066d4cec248c7a2021-12-02T14:42:00ZLearning through ferroelectric domain dynamics in solid-state synapses10.1038/ncomms147362041-1723https://doaj.org/article/4eca89cea8fb41d595066d4cec248c7a2017-04-01T00:00:00Zhttps://doi.org/10.1038/ncomms14736https://doaj.org/toc/2041-1723Accurate modelling of memristor dynamics is essential for the development of autonomous learning in artificial neural networks. Through a combined theoretical and experimental study of the polarization switching process in ferroelectric memristors, Boynet al. establish a model that enables learning and retrieving patterns in a neural system.Sören BoynJulie GrollierGwendal LecerfBin XuNicolas LocatelliStéphane FusilStéphanie GirodCécile CarrétéroKarin GarciaStéphane XavierJean TomasLaurent BellaicheManuel BibesAgnès BarthélémySylvain SaïghiVincent GarciaNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-7 (2017)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Sören Boyn
Julie Grollier
Gwendal Lecerf
Bin Xu
Nicolas Locatelli
Stéphane Fusil
Stéphanie Girod
Cécile Carrétéro
Karin Garcia
Stéphane Xavier
Jean Tomas
Laurent Bellaiche
Manuel Bibes
Agnès Barthélémy
Sylvain Saïghi
Vincent Garcia
Learning through ferroelectric domain dynamics in solid-state synapses
description Accurate modelling of memristor dynamics is essential for the development of autonomous learning in artificial neural networks. Through a combined theoretical and experimental study of the polarization switching process in ferroelectric memristors, Boynet al. establish a model that enables learning and retrieving patterns in a neural system.
format article
author Sören Boyn
Julie Grollier
Gwendal Lecerf
Bin Xu
Nicolas Locatelli
Stéphane Fusil
Stéphanie Girod
Cécile Carrétéro
Karin Garcia
Stéphane Xavier
Jean Tomas
Laurent Bellaiche
Manuel Bibes
Agnès Barthélémy
Sylvain Saïghi
Vincent Garcia
author_facet Sören Boyn
Julie Grollier
Gwendal Lecerf
Bin Xu
Nicolas Locatelli
Stéphane Fusil
Stéphanie Girod
Cécile Carrétéro
Karin Garcia
Stéphane Xavier
Jean Tomas
Laurent Bellaiche
Manuel Bibes
Agnès Barthélémy
Sylvain Saïghi
Vincent Garcia
author_sort Sören Boyn
title Learning through ferroelectric domain dynamics in solid-state synapses
title_short Learning through ferroelectric domain dynamics in solid-state synapses
title_full Learning through ferroelectric domain dynamics in solid-state synapses
title_fullStr Learning through ferroelectric domain dynamics in solid-state synapses
title_full_unstemmed Learning through ferroelectric domain dynamics in solid-state synapses
title_sort learning through ferroelectric domain dynamics in solid-state synapses
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/4eca89cea8fb41d595066d4cec248c7a
work_keys_str_mv AT sorenboyn learningthroughferroelectricdomaindynamicsinsolidstatesynapses
AT juliegrollier learningthroughferroelectricdomaindynamicsinsolidstatesynapses
AT gwendallecerf learningthroughferroelectricdomaindynamicsinsolidstatesynapses
AT binxu learningthroughferroelectricdomaindynamicsinsolidstatesynapses
AT nicolaslocatelli learningthroughferroelectricdomaindynamicsinsolidstatesynapses
AT stephanefusil learningthroughferroelectricdomaindynamicsinsolidstatesynapses
AT stephaniegirod learningthroughferroelectricdomaindynamicsinsolidstatesynapses
AT cecilecarretero learningthroughferroelectricdomaindynamicsinsolidstatesynapses
AT karingarcia learningthroughferroelectricdomaindynamicsinsolidstatesynapses
AT stephanexavier learningthroughferroelectricdomaindynamicsinsolidstatesynapses
AT jeantomas learningthroughferroelectricdomaindynamicsinsolidstatesynapses
AT laurentbellaiche learningthroughferroelectricdomaindynamicsinsolidstatesynapses
AT manuelbibes learningthroughferroelectricdomaindynamicsinsolidstatesynapses
AT agnesbarthelemy learningthroughferroelectricdomaindynamicsinsolidstatesynapses
AT sylvainsaighi learningthroughferroelectricdomaindynamicsinsolidstatesynapses
AT vincentgarcia learningthroughferroelectricdomaindynamicsinsolidstatesynapses
_version_ 1718389807487385600