Learning through ferroelectric domain dynamics in solid-state synapses
Accurate modelling of memristor dynamics is essential for the development of autonomous learning in artificial neural networks. Through a combined theoretical and experimental study of the polarization switching process in ferroelectric memristors, Boynet al. establish a model that enables learning...
Guardado en:
Autores principales: | Sören Boyn, Julie Grollier, Gwendal Lecerf, Bin Xu, Nicolas Locatelli, Stéphane Fusil, Stéphanie Girod, Cécile Carrétéro, Karin Garcia, Stéphane Xavier, Jean Tomas, Laurent Bellaiche, Manuel Bibes, Agnès Barthélémy, Sylvain Saïghi, Vincent Garcia |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4eca89cea8fb41d595066d4cec248c7a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Large elasto-optic effect and reversible electrochromism in multiferroic BiFeO3
por: D. Sando, et al.
Publicado: (2016) -
Tunnel electroresistance through organic ferroelectrics
por: B. B. Tian, et al.
Publicado: (2016) -
Topology and control of self-assembled domain patterns in low-dimensional ferroelectrics
por: Y. Nahas, et al.
Publicado: (2020) -
Ferroelectric phase-transition frustration near a tricritical composition point
por: Xian-Kui Wei, et al.
Publicado: (2021) -
Subterahertz dielectric relaxation in lead-free Ba(Zr,Ti)O3 relaxor ferroelectrics
por: D. Wang, et al.
Publicado: (2016)