Montgomery identity and Ostrowski-type inequalities via quantum calculus
In this paper, we prove a quantum version of Montgomery identity and prove some new Ostrowski-type inequalities for convex functions in the setting of quantum calculus. Moreover, we discuss several special cases of newly established inequalities and obtain different new and existing inequalities in...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4edf6e2e4abd4a498193c54cf980d0e1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4edf6e2e4abd4a498193c54cf980d0e1 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4edf6e2e4abd4a498193c54cf980d0e12021-12-05T14:10:53ZMontgomery identity and Ostrowski-type inequalities via quantum calculus2391-545510.1515/math-2021-0088https://doaj.org/article/4edf6e2e4abd4a498193c54cf980d0e12021-09-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0088https://doaj.org/toc/2391-5455In this paper, we prove a quantum version of Montgomery identity and prove some new Ostrowski-type inequalities for convex functions in the setting of quantum calculus. Moreover, we discuss several special cases of newly established inequalities and obtain different new and existing inequalities in the field of integral inequalities.Sitthiwirattham ThaninAli Muhammad AamirBudak HuseyinAbbas MujahidChasreechai SaowaluckDe Gruyterarticleostrowski inequalitiesq-integralquantum calculusintegral inequalitiesdifference operatorsconvex functions26a5126d1526d10MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 1098-1109 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
ostrowski inequalities q-integral quantum calculus integral inequalities difference operators convex functions 26a51 26d15 26d10 Mathematics QA1-939 |
spellingShingle |
ostrowski inequalities q-integral quantum calculus integral inequalities difference operators convex functions 26a51 26d15 26d10 Mathematics QA1-939 Sitthiwirattham Thanin Ali Muhammad Aamir Budak Huseyin Abbas Mujahid Chasreechai Saowaluck Montgomery identity and Ostrowski-type inequalities via quantum calculus |
description |
In this paper, we prove a quantum version of Montgomery identity and prove some new Ostrowski-type inequalities for convex functions in the setting of quantum calculus. Moreover, we discuss several special cases of newly established inequalities and obtain different new and existing inequalities in the field of integral inequalities. |
format |
article |
author |
Sitthiwirattham Thanin Ali Muhammad Aamir Budak Huseyin Abbas Mujahid Chasreechai Saowaluck |
author_facet |
Sitthiwirattham Thanin Ali Muhammad Aamir Budak Huseyin Abbas Mujahid Chasreechai Saowaluck |
author_sort |
Sitthiwirattham Thanin |
title |
Montgomery identity and Ostrowski-type inequalities via quantum calculus |
title_short |
Montgomery identity and Ostrowski-type inequalities via quantum calculus |
title_full |
Montgomery identity and Ostrowski-type inequalities via quantum calculus |
title_fullStr |
Montgomery identity and Ostrowski-type inequalities via quantum calculus |
title_full_unstemmed |
Montgomery identity and Ostrowski-type inequalities via quantum calculus |
title_sort |
montgomery identity and ostrowski-type inequalities via quantum calculus |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/4edf6e2e4abd4a498193c54cf980d0e1 |
work_keys_str_mv |
AT sitthiwiratthamthanin montgomeryidentityandostrowskitypeinequalitiesviaquantumcalculus AT alimuhammadaamir montgomeryidentityandostrowskitypeinequalitiesviaquantumcalculus AT budakhuseyin montgomeryidentityandostrowskitypeinequalitiesviaquantumcalculus AT abbasmujahid montgomeryidentityandostrowskitypeinequalitiesviaquantumcalculus AT chasreechaisaowaluck montgomeryidentityandostrowskitypeinequalitiesviaquantumcalculus |
_version_ |
1718371602116116480 |