Montgomery identity and Ostrowski-type inequalities via quantum calculus
In this paper, we prove a quantum version of Montgomery identity and prove some new Ostrowski-type inequalities for convex functions in the setting of quantum calculus. Moreover, we discuss several special cases of newly established inequalities and obtain different new and existing inequalities in...
Guardado en:
Autores principales: | Sitthiwirattham Thanin, Ali Muhammad Aamir, Budak Huseyin, Abbas Mujahid, Chasreechai Saowaluck |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4edf6e2e4abd4a498193c54cf980d0e1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus
por: Ali Muhammad Aamir, et al.
Publicado: (2021) -
Refinements of quantum Hermite-Hadamard-type inequalities
por: Budak Hüseyin, et al.
Publicado: (2021) -
On some new quantum midpoint-type inequalities for twice quantum differentiable convex functions
por: Ali Muhammad Aamir, et al.
Publicado: (2021) -
Ostrowski and Simpson type inequalities for multiplicative integrals
por: Aamir Ali,Muhammad, et al.
Publicado: (2021) -
Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions
por: Budak Huseyin, et al.
Publicado: (2021)