Montgomery identity and Ostrowski-type inequalities via quantum calculus
In this paper, we prove a quantum version of Montgomery identity and prove some new Ostrowski-type inequalities for convex functions in the setting of quantum calculus. Moreover, we discuss several special cases of newly established inequalities and obtain different new and existing inequalities in...
Enregistré dans:
Auteurs principaux: | Sitthiwirattham Thanin, Ali Muhammad Aamir, Budak Huseyin, Abbas Mujahid, Chasreechai Saowaluck |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/4edf6e2e4abd4a498193c54cf980d0e1 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus
par: Ali Muhammad Aamir, et autres
Publié: (2021) -
Refinements of quantum Hermite-Hadamard-type inequalities
par: Budak Hüseyin, et autres
Publié: (2021) -
On some new quantum midpoint-type inequalities for twice quantum differentiable convex functions
par: Ali Muhammad Aamir, et autres
Publié: (2021) -
Ostrowski and Simpson type inequalities for multiplicative integrals
par: Aamir Ali,Muhammad, et autres
Publié: (2021) -
Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions
par: Budak Huseyin, et autres
Publié: (2021)