A real‐world dataset and data simulation algorithm for automated fish species identification
Abstract Developing high‐performing machine learning algorithms requires large amounts of annotated data. Manual annotation of data is labour‐intensive, and the cost and effort needed are an important obstacle to the development and deployment of automated analysis. In a previous work, we have shown...
Guardado en:
Autores principales: | Vaneeda Allken, Shale Rosen, Nils Olav Handegard, Ketil Malde |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4ee5074aad3e440d80135a3951387236 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
High‐resolution gridded climate data for Europe based on bias‐corrected EURO‐CORDEX: The ECLIPS dataset
por: Debojyoti Chakraborty, et al.
Publicado: (2021) -
Progress towards a holistic land and marine surface meteorological database and a call for additional contributions
por: Simon Noone, et al.
Publicado: (2021) -
Historical tide gauge sea‐level observations in Alicante and Santander (Spain) since the 19th century
por: Marta Marcos, et al.
Publicado: (2021) -
Regionally aggregated, stitched and de‐drifted CMIP‐climate data, processed with netCDF‐SCM v2.0.0
por: Zebedee Nicholls, et al.
Publicado: (2021) -
Global database of diffuse riverine nitrogen and phosphorus loads and yields
por: Rich W. McDowell, et al.
Publicado: (2021)