The variation mechanism of core pressure and its influence on the surface quality of honeycomb sandwich composite with thin facesheets
This paper successfully achieves the in-situ monitoring on core pressure of honeycomb sandwich composite during hot-pressing process by using a self-designed pressure sensing system. The core pressure variation and surface quality of honeycomb sandwich composites were investigated under open or seal...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4eedb89179584cbda68f1546963ce05d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4eedb89179584cbda68f1546963ce05d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4eedb89179584cbda68f1546963ce05d2021-11-28T04:32:43ZThe variation mechanism of core pressure and its influence on the surface quality of honeycomb sandwich composite with thin facesheets2238-785410.1016/j.jmrt.2021.11.066https://doaj.org/article/4eedb89179584cbda68f1546963ce05d2021-11-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2238785421013454https://doaj.org/toc/2238-7854This paper successfully achieves the in-situ monitoring on core pressure of honeycomb sandwich composite during hot-pressing process by using a self-designed pressure sensing system. The core pressure variation and surface quality of honeycomb sandwich composites were investigated under open or sealed conditions, where the edges of sandwich composites were exposed to air or sealed with sealant tape, respectively. The results show that the core pressure increases with the increase in temperature and then declines at the stable temperature platform and cooling stage under open condition. The core pressure at the central area is bigger than that at the edge areas, and the dimpling defects are most pronounced on the thin facesheets at the edge areas under open condition during hot-press process. Under sealed condition, the core pressure is greatly enhanced and maintains at a higher pressure during the whole manufacturing process, and thus the dimpling defects are minimized. The maximum core pressure at the edge area and central area of 25 cm × 25 cm sandwich composite may reach 4 kPa and 13 kPa, respectively. Furthermore, by using a self-designed device, the air permeability of the whole sandwich structure is measured, and a two-dimensional model is built to simulate the air flow and core pressure variation inside sandwich composites during hot-pressing process. The simulated core pressure variation shows the same tendency with experimental results, which explains the mechanism of core pressure variation and guides the control of process quality.Yansheng FanXiaolin YangJing HeChaoming SunShaokai WangYizhuo GuMin LiElsevierarticleSandwich compositeHoneycomb coreCore pressureAir permeabilityThin facesheetMining engineering. MetallurgyTN1-997ENJournal of Materials Research and Technology, Vol 15, Iss , Pp 6113-6124 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Sandwich composite Honeycomb core Core pressure Air permeability Thin facesheet Mining engineering. Metallurgy TN1-997 |
spellingShingle |
Sandwich composite Honeycomb core Core pressure Air permeability Thin facesheet Mining engineering. Metallurgy TN1-997 Yansheng Fan Xiaolin Yang Jing He Chaoming Sun Shaokai Wang Yizhuo Gu Min Li The variation mechanism of core pressure and its influence on the surface quality of honeycomb sandwich composite with thin facesheets |
description |
This paper successfully achieves the in-situ monitoring on core pressure of honeycomb sandwich composite during hot-pressing process by using a self-designed pressure sensing system. The core pressure variation and surface quality of honeycomb sandwich composites were investigated under open or sealed conditions, where the edges of sandwich composites were exposed to air or sealed with sealant tape, respectively. The results show that the core pressure increases with the increase in temperature and then declines at the stable temperature platform and cooling stage under open condition. The core pressure at the central area is bigger than that at the edge areas, and the dimpling defects are most pronounced on the thin facesheets at the edge areas under open condition during hot-press process. Under sealed condition, the core pressure is greatly enhanced and maintains at a higher pressure during the whole manufacturing process, and thus the dimpling defects are minimized. The maximum core pressure at the edge area and central area of 25 cm × 25 cm sandwich composite may reach 4 kPa and 13 kPa, respectively. Furthermore, by using a self-designed device, the air permeability of the whole sandwich structure is measured, and a two-dimensional model is built to simulate the air flow and core pressure variation inside sandwich composites during hot-pressing process. The simulated core pressure variation shows the same tendency with experimental results, which explains the mechanism of core pressure variation and guides the control of process quality. |
format |
article |
author |
Yansheng Fan Xiaolin Yang Jing He Chaoming Sun Shaokai Wang Yizhuo Gu Min Li |
author_facet |
Yansheng Fan Xiaolin Yang Jing He Chaoming Sun Shaokai Wang Yizhuo Gu Min Li |
author_sort |
Yansheng Fan |
title |
The variation mechanism of core pressure and its influence on the surface quality of honeycomb sandwich composite with thin facesheets |
title_short |
The variation mechanism of core pressure and its influence on the surface quality of honeycomb sandwich composite with thin facesheets |
title_full |
The variation mechanism of core pressure and its influence on the surface quality of honeycomb sandwich composite with thin facesheets |
title_fullStr |
The variation mechanism of core pressure and its influence on the surface quality of honeycomb sandwich composite with thin facesheets |
title_full_unstemmed |
The variation mechanism of core pressure and its influence on the surface quality of honeycomb sandwich composite with thin facesheets |
title_sort |
variation mechanism of core pressure and its influence on the surface quality of honeycomb sandwich composite with thin facesheets |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/4eedb89179584cbda68f1546963ce05d |
work_keys_str_mv |
AT yanshengfan thevariationmechanismofcorepressureanditsinfluenceonthesurfacequalityofhoneycombsandwichcompositewiththinfacesheets AT xiaolinyang thevariationmechanismofcorepressureanditsinfluenceonthesurfacequalityofhoneycombsandwichcompositewiththinfacesheets AT jinghe thevariationmechanismofcorepressureanditsinfluenceonthesurfacequalityofhoneycombsandwichcompositewiththinfacesheets AT chaomingsun thevariationmechanismofcorepressureanditsinfluenceonthesurfacequalityofhoneycombsandwichcompositewiththinfacesheets AT shaokaiwang thevariationmechanismofcorepressureanditsinfluenceonthesurfacequalityofhoneycombsandwichcompositewiththinfacesheets AT yizhuogu thevariationmechanismofcorepressureanditsinfluenceonthesurfacequalityofhoneycombsandwichcompositewiththinfacesheets AT minli thevariationmechanismofcorepressureanditsinfluenceonthesurfacequalityofhoneycombsandwichcompositewiththinfacesheets AT yanshengfan variationmechanismofcorepressureanditsinfluenceonthesurfacequalityofhoneycombsandwichcompositewiththinfacesheets AT xiaolinyang variationmechanismofcorepressureanditsinfluenceonthesurfacequalityofhoneycombsandwichcompositewiththinfacesheets AT jinghe variationmechanismofcorepressureanditsinfluenceonthesurfacequalityofhoneycombsandwichcompositewiththinfacesheets AT chaomingsun variationmechanismofcorepressureanditsinfluenceonthesurfacequalityofhoneycombsandwichcompositewiththinfacesheets AT shaokaiwang variationmechanismofcorepressureanditsinfluenceonthesurfacequalityofhoneycombsandwichcompositewiththinfacesheets AT yizhuogu variationmechanismofcorepressureanditsinfluenceonthesurfacequalityofhoneycombsandwichcompositewiththinfacesheets AT minli variationmechanismofcorepressureanditsinfluenceonthesurfacequalityofhoneycombsandwichcompositewiththinfacesheets |
_version_ |
1718408315051966464 |