Single-cell, single-mRNA analysis of Ccnb1 promoter regulation
Abstract Promoter activation drives gene transcriptional output. Here we report generating site-specifically integrated single-copy promoter transgenes and measuring their expression to indicate promoter activities at single-mRNA level. mRNA counts, Pol II density and Pol II firing rates of the Ccnb...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4ef03e3955a142ac8db814f6ff699253 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4ef03e3955a142ac8db814f6ff699253 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4ef03e3955a142ac8db814f6ff6992532021-12-02T12:30:44ZSingle-cell, single-mRNA analysis of Ccnb1 promoter regulation10.1038/s41598-017-02240-y2045-2322https://doaj.org/article/4ef03e3955a142ac8db814f6ff6992532017-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-02240-yhttps://doaj.org/toc/2045-2322Abstract Promoter activation drives gene transcriptional output. Here we report generating site-specifically integrated single-copy promoter transgenes and measuring their expression to indicate promoter activities at single-mRNA level. mRNA counts, Pol II density and Pol II firing rates of the Ccnb1 promoter transgene resembled those of the native Ccnb1 gene both among asynchronous cells and during the cell cycle. We observed distinct activation states of the Ccnb1 promoter among G1 and G2/M cells, suggesting cell cycle-independent origin of cell-to-cell variation in Ccnb1 promoter activation. Expressing a dominant-negative mutant of NF-YA, a key transcriptional activator of the Ccnb1 promoter, increased its “OFF”/“ON” time ratios but did not alter Pol II firing rates during the “ON” period. Furthermore, comparing H3K4me2 and H3K79me2 levels at the Ccnb1 promoter transgene and the native Ccnb1 gene indicated that the enrichment of these two active histone marks did not predispose higher transcriptional activities. In summary, this experimental system enables bridging transcription imaging with molecular analysis to provide novel insights into eukaryotic transcriptional regulation.Nidhi VishnoiJie YaoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-15 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Nidhi Vishnoi Jie Yao Single-cell, single-mRNA analysis of Ccnb1 promoter regulation |
description |
Abstract Promoter activation drives gene transcriptional output. Here we report generating site-specifically integrated single-copy promoter transgenes and measuring their expression to indicate promoter activities at single-mRNA level. mRNA counts, Pol II density and Pol II firing rates of the Ccnb1 promoter transgene resembled those of the native Ccnb1 gene both among asynchronous cells and during the cell cycle. We observed distinct activation states of the Ccnb1 promoter among G1 and G2/M cells, suggesting cell cycle-independent origin of cell-to-cell variation in Ccnb1 promoter activation. Expressing a dominant-negative mutant of NF-YA, a key transcriptional activator of the Ccnb1 promoter, increased its “OFF”/“ON” time ratios but did not alter Pol II firing rates during the “ON” period. Furthermore, comparing H3K4me2 and H3K79me2 levels at the Ccnb1 promoter transgene and the native Ccnb1 gene indicated that the enrichment of these two active histone marks did not predispose higher transcriptional activities. In summary, this experimental system enables bridging transcription imaging with molecular analysis to provide novel insights into eukaryotic transcriptional regulation. |
format |
article |
author |
Nidhi Vishnoi Jie Yao |
author_facet |
Nidhi Vishnoi Jie Yao |
author_sort |
Nidhi Vishnoi |
title |
Single-cell, single-mRNA analysis of Ccnb1 promoter regulation |
title_short |
Single-cell, single-mRNA analysis of Ccnb1 promoter regulation |
title_full |
Single-cell, single-mRNA analysis of Ccnb1 promoter regulation |
title_fullStr |
Single-cell, single-mRNA analysis of Ccnb1 promoter regulation |
title_full_unstemmed |
Single-cell, single-mRNA analysis of Ccnb1 promoter regulation |
title_sort |
single-cell, single-mrna analysis of ccnb1 promoter regulation |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/4ef03e3955a142ac8db814f6ff699253 |
work_keys_str_mv |
AT nidhivishnoi singlecellsinglemrnaanalysisofccnb1promoterregulation AT jieyao singlecellsinglemrnaanalysisofccnb1promoterregulation |
_version_ |
1718394333683515392 |