Investigation and optimization of formulation parameters on preparation of targeted anti-CD205 tailored PLGA nanoparticles
Sheikh Tasnim Jahan, Azita Haddadi Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada Abstract: The purpose of this study was to assess the effect of various formulation parameters on anti-CD205 antibody decorated poly(D, L-lactide c...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2015
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4ef36678163b4bfb831627ebff3fc4db |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4ef36678163b4bfb831627ebff3fc4db |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4ef36678163b4bfb831627ebff3fc4db2021-12-02T05:27:26ZInvestigation and optimization of formulation parameters on preparation of targeted anti-CD205 tailored PLGA nanoparticles1178-2013https://doaj.org/article/4ef36678163b4bfb831627ebff3fc4db2015-12-01T00:00:00Zhttps://www.dovepress.com/investigation-and-optimization-of-formulation-parameters-on-preparatio-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Sheikh Tasnim Jahan, Azita Haddadi Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada Abstract: The purpose of this study was to assess the effect of various formulation parameters on anti-CD205 antibody decorated poly(D, L-lactide co-glycolide) (PLGA) nanoparticles (NPs) in terms of their ability to target dendritic cells (DCs). In brief, emulsification solvent evaporation technique was adapted to design NP formulations using two different viscosity grades (low and high) of both ester and carboxylic acid terminated PLGA. Incorporation of ligand was achieved following physical adsorption or chemical conjugation processes. The physicochemical characterizations of formulations were executed to assess the effects of different solvents (chloroform and ethyl acetate), stabilizer percentage, polymer types, polymer viscosities, ligand-NP bonding types, cross-linkers, and cryoprotectants (sucrose and trehalose). Modification of any of these parameters shows significant improvement of physicochemical properties of NPs. Ethyl acetate was the solvent of choice for the formulations to ensure better emulsion formation. Infrared spectroscopy confirmed the presence of anti-CD205 antibody in the NP formulation. Finally, cytotoxicity assay confirmed the safety profile of the NPs for DCs. Thus, ligand modified structurally concealed PLGA NPs is a promising delivery tool for targeting DCs in vivo. Keywords: nanoparticle, anti-CD205, PLGA, dendritic cellsJahan STHaddadi ADove Medical PressarticleNanoparticleanti-CD205PLGAdendritic cellsMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2015, Iss default, Pp 7371-7384 (2015) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Nanoparticle anti-CD205 PLGA dendritic cells Medicine (General) R5-920 |
spellingShingle |
Nanoparticle anti-CD205 PLGA dendritic cells Medicine (General) R5-920 Jahan ST Haddadi A Investigation and optimization of formulation parameters on preparation of targeted anti-CD205 tailored PLGA nanoparticles |
description |
Sheikh Tasnim Jahan, Azita Haddadi Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada Abstract: The purpose of this study was to assess the effect of various formulation parameters on anti-CD205 antibody decorated poly(D, L-lactide co-glycolide) (PLGA) nanoparticles (NPs) in terms of their ability to target dendritic cells (DCs). In brief, emulsification solvent evaporation technique was adapted to design NP formulations using two different viscosity grades (low and high) of both ester and carboxylic acid terminated PLGA. Incorporation of ligand was achieved following physical adsorption or chemical conjugation processes. The physicochemical characterizations of formulations were executed to assess the effects of different solvents (chloroform and ethyl acetate), stabilizer percentage, polymer types, polymer viscosities, ligand-NP bonding types, cross-linkers, and cryoprotectants (sucrose and trehalose). Modification of any of these parameters shows significant improvement of physicochemical properties of NPs. Ethyl acetate was the solvent of choice for the formulations to ensure better emulsion formation. Infrared spectroscopy confirmed the presence of anti-CD205 antibody in the NP formulation. Finally, cytotoxicity assay confirmed the safety profile of the NPs for DCs. Thus, ligand modified structurally concealed PLGA NPs is a promising delivery tool for targeting DCs in vivo. Keywords: nanoparticle, anti-CD205, PLGA, dendritic cells |
format |
article |
author |
Jahan ST Haddadi A |
author_facet |
Jahan ST Haddadi A |
author_sort |
Jahan ST |
title |
Investigation and optimization of formulation parameters on preparation of targeted anti-CD205 tailored PLGA nanoparticles |
title_short |
Investigation and optimization of formulation parameters on preparation of targeted anti-CD205 tailored PLGA nanoparticles |
title_full |
Investigation and optimization of formulation parameters on preparation of targeted anti-CD205 tailored PLGA nanoparticles |
title_fullStr |
Investigation and optimization of formulation parameters on preparation of targeted anti-CD205 tailored PLGA nanoparticles |
title_full_unstemmed |
Investigation and optimization of formulation parameters on preparation of targeted anti-CD205 tailored PLGA nanoparticles |
title_sort |
investigation and optimization of formulation parameters on preparation of targeted anti-cd205 tailored plga nanoparticles |
publisher |
Dove Medical Press |
publishDate |
2015 |
url |
https://doaj.org/article/4ef36678163b4bfb831627ebff3fc4db |
work_keys_str_mv |
AT jahanst investigationandoptimizationofformulationparametersonpreparationoftargetedanticd205tailoredplgananoparticles AT haddadia investigationandoptimizationofformulationparametersonpreparationoftargetedanticd205tailoredplgananoparticles |
_version_ |
1718400409099304960 |