Effect of humidity on diameter of polyamide 6 nanofiber in electrospinning process

Various thermoplastic polymers have been spun to nanofibers by the electrospinning method, in which a polymer solution is ejected as a fine jet of liquid from the tip of the needle and is deposited on the collector by applying a high voltage to the polymer solution in the syringe. Due to special cha...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kazuto TANAKA, Mai TOMIZAWA, Tsutao KATAYAMA
Formato: article
Lenguaje:EN
Publicado: The Japan Society of Mechanical Engineers 2016
Materias:
Acceso en línea:https://doaj.org/article/4ef66b4780604f8d9ace420d47bd8c16
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4ef66b4780604f8d9ace420d47bd8c16
record_format dspace
spelling oai:doaj.org-article:4ef66b4780604f8d9ace420d47bd8c162021-11-26T06:58:32ZEffect of humidity on diameter of polyamide 6 nanofiber in electrospinning process2187-974510.1299/mej.16-00289https://doaj.org/article/4ef66b4780604f8d9ace420d47bd8c162016-11-01T00:00:00Zhttps://www.jstage.jst.go.jp/article/mej/3/6/3_16-00289/_pdf/-char/enhttps://doaj.org/toc/2187-9745Various thermoplastic polymers have been spun to nanofibers by the electrospinning method, in which a polymer solution is ejected as a fine jet of liquid from the tip of the needle and is deposited on the collector by applying a high voltage to the polymer solution in the syringe. Due to special characteristics of nanofibers such as nanometer sized diameter, high surface area to volume ratio, and higher alignment of molecular chain, they have been used for a wide range of applications such as medical scaffolds and air filters. The morphology and diameter of electrospun fibers are dependent on a number of processing parameters that include the properties of the solution, the operational conditions and the surrounding conditions. The influence of the humidity on the fiber diameter of nanofibers in the electrospinning process has not been clarified yet. Polyamide 6 is an industrially important polymer thanks to its excellent physical properties, e.g. high fatigue strength, low coefficient of friction, and high resistance to chemicals. In this study, the influence of the humidity on the fiber diameter of PA6 in the electrospinning process was investigated by SEM observation and its mechanical properties were evaluated by tensile test. As the amount of humidity increased, the fiber diameters decreased. The tensile strengths of PA6 nanofibers nonwoven fabrics which were electrospun at 25 % and 65 % of humidity were 49±5 MPa and 71±12 MPa, respectively.Kazuto TANAKAMai TOMIZAWATsutao KATAYAMAThe Japan Society of Mechanical Engineersarticlepolyamidenanofiberelectrospinninghumiditydiametertensile strengthMechanical engineering and machineryTJ1-1570ENMechanical Engineering Journal, Vol 3, Iss 6, Pp 16-00289-16-00289 (2016)
institution DOAJ
collection DOAJ
language EN
topic polyamide
nanofiber
electrospinning
humidity
diameter
tensile strength
Mechanical engineering and machinery
TJ1-1570
spellingShingle polyamide
nanofiber
electrospinning
humidity
diameter
tensile strength
Mechanical engineering and machinery
TJ1-1570
Kazuto TANAKA
Mai TOMIZAWA
Tsutao KATAYAMA
Effect of humidity on diameter of polyamide 6 nanofiber in electrospinning process
description Various thermoplastic polymers have been spun to nanofibers by the electrospinning method, in which a polymer solution is ejected as a fine jet of liquid from the tip of the needle and is deposited on the collector by applying a high voltage to the polymer solution in the syringe. Due to special characteristics of nanofibers such as nanometer sized diameter, high surface area to volume ratio, and higher alignment of molecular chain, they have been used for a wide range of applications such as medical scaffolds and air filters. The morphology and diameter of electrospun fibers are dependent on a number of processing parameters that include the properties of the solution, the operational conditions and the surrounding conditions. The influence of the humidity on the fiber diameter of nanofibers in the electrospinning process has not been clarified yet. Polyamide 6 is an industrially important polymer thanks to its excellent physical properties, e.g. high fatigue strength, low coefficient of friction, and high resistance to chemicals. In this study, the influence of the humidity on the fiber diameter of PA6 in the electrospinning process was investigated by SEM observation and its mechanical properties were evaluated by tensile test. As the amount of humidity increased, the fiber diameters decreased. The tensile strengths of PA6 nanofibers nonwoven fabrics which were electrospun at 25 % and 65 % of humidity were 49±5 MPa and 71±12 MPa, respectively.
format article
author Kazuto TANAKA
Mai TOMIZAWA
Tsutao KATAYAMA
author_facet Kazuto TANAKA
Mai TOMIZAWA
Tsutao KATAYAMA
author_sort Kazuto TANAKA
title Effect of humidity on diameter of polyamide 6 nanofiber in electrospinning process
title_short Effect of humidity on diameter of polyamide 6 nanofiber in electrospinning process
title_full Effect of humidity on diameter of polyamide 6 nanofiber in electrospinning process
title_fullStr Effect of humidity on diameter of polyamide 6 nanofiber in electrospinning process
title_full_unstemmed Effect of humidity on diameter of polyamide 6 nanofiber in electrospinning process
title_sort effect of humidity on diameter of polyamide 6 nanofiber in electrospinning process
publisher The Japan Society of Mechanical Engineers
publishDate 2016
url https://doaj.org/article/4ef66b4780604f8d9ace420d47bd8c16
work_keys_str_mv AT kazutotanaka effectofhumidityondiameterofpolyamide6nanofiberinelectrospinningprocess
AT maitomizawa effectofhumidityondiameterofpolyamide6nanofiberinelectrospinningprocess
AT tsutaokatayama effectofhumidityondiameterofpolyamide6nanofiberinelectrospinningprocess
_version_ 1718409717375565824