Predicting medication adherence using ensemble learning and deep learning models with large scale healthcare data
Abstract Clinical studies from WHO have demonstrated that only 50–70% of patients adhere properly to prescribed drug therapy. Such adherence failure can impact therapeutic efficacy for the patients in question and compromises data quality around the population-level efficacy of the drug for the indi...
Guardado en:
Autores principales: | Yingqi Gu, Akshay Zalkikar, Mingming Liu, Lara Kelly, Amy Hall, Kieran Daly, Tomas Ward |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4ef901330e134f2aaf41a5f98029a866 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep learning the structural determinants of protein biochemical properties by comparing structural ensembles with DiffNets
por: Michael D. Ward, et al.
Publicado: (2021) -
A calibrated deep learning ensemble for abnormality detection in musculoskeletal radiographs
por: Minliang He, et al.
Publicado: (2021) -
Multimodal Ensemble Deep Learning to Predict Disruptive Behavior Disorders in Children
por: Sreevalsan S. Menon, et al.
Publicado: (2021) -
Efficient and accurate identification of ear diseases using an ensemble deep learning model
por: Xinyu Zeng, et al.
Publicado: (2021) -
Pneumonia detection in chest X-ray images using an ensemble of deep learning models.
por: Rohit Kundu, et al.
Publicado: (2021)