National-Scale Cropland Mapping Based on Phenological Metrics, Environmental Covariates, and Machine Learning on Google Earth Engine
Many challenges prevail in cropland mapping over large areas, including dealing with massive volumes of datasets and computing capabilities. Accordingly, new opportunities have been opened at a breakneck pace with the launch of new satellites, the continuous improvements in data retrieval technology...
Guardado en:
Autores principales: | Abdelaziz Htitiou, Abdelghani Boudhar, Abdelghani Chehbouni, Tarik Benabdelouahab |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4f111b681a4f437f8c7c4c09c449bb43 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Preliminary Global Automatic Burned-Area Algorithm at Medium Resolution in Google Earth Engine
por: Ekhi Roteta, et al.
Publicado: (2021) -
Continuous Detection of Surface-Mining Footprint in Copper Mine Using Google Earth Engine
por: Maoxin Zhang, et al.
Publicado: (2021) -
Toward a More Representative Monitoring of Land-Use and Land-Cover Dynamics: The Use of a Sample-Based Assessment through Augmented Visual Interpretation Using Open Foris Collect Earth
por: Danae Maniatis, et al.
Publicado: (2021) -
Optimal Grid-Based Filtering for Crop Phenology Estimation with Sentinel-1 SAR Data
por: Lucio Mascolo, et al.
Publicado: (2021) -
Google Earth as a resource for remote teaching: an application to crime scene investigation
por: Katie Davidson
Publicado: (2021)