A comparison of prediction approaches for identifying prodromal Parkinson disease.
Identifying people with Parkinson disease during the prodromal period, including via algorithms in administrative claims data, is an important research and clinical priority. We sought to improve upon an existing penalized logistic regression model, based on diagnosis and procedure codes, by adding...
Guardado en:
Autores principales: | Mark N Warden, Susan Searles Nielsen, Alejandra Camacho-Soto, Roman Garnett, Brad A Racette |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4f17074530b341eaa642d598bcba33fe |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Heterogeneity of prodromal Parkinson symptoms in siblings of Parkinson disease patients
por: Luca Baldelli, et al.
Publicado: (2021) -
Prediction of tau accumulation in prodromal Alzheimer’s disease using an ensemble machine learning approach
por: Jaeho Kim, et al.
Publicado: (2021) -
Association of EEG, MRI, and regional blood flow biomarkers is predictive of prodromal Alzheimer’s disease
por: Moretti DV
Publicado: (2015) -
Electroencephalography-driven approach to prodromal Alzheimer's disease diagnosis: from biomarker integration to network-level comprehension
por: Moretti DV
Publicado: (2016) -
Prodromal frontotemporal dementia: clinical features and predictors of progression
por: Alberto Benussi, et al.
Publicado: (2021)