Simultaneous Production of Solar Thermal Heat and Power for Industrial Applications

Currently most of the energy production is supported by fossil fuels, however, renewable sources contribution on worldwide demand of energy has been in constantly growth. One of the main challenges in the use of solar thermal energy in industrial processes is their cost, especially when is compared...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Guillermo Martínez-Rodríguez, Amanda L. Fuentes-Silva, Juan-Carlos Baltazar
Formato: article
Lenguaje:EN
Publicado: AIDIC Servizi S.r.l. 2021
Materias:
Acceso en línea:https://doaj.org/article/4f5368f96e7e453da81d712c9b7e9236
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4f5368f96e7e453da81d712c9b7e9236
record_format dspace
spelling oai:doaj.org-article:4f5368f96e7e453da81d712c9b7e92362021-11-15T21:48:16ZSimultaneous Production of Solar Thermal Heat and Power for Industrial Applications10.3303/CET21880842283-9216https://doaj.org/article/4f5368f96e7e453da81d712c9b7e92362021-11-01T00:00:00Zhttps://www.cetjournal.it/index.php/cet/article/view/11877https://doaj.org/toc/2283-9216Currently most of the energy production is supported by fossil fuels, however, renewable sources contribution on worldwide demand of energy has been in constantly growth. One of the main challenges in the use of solar thermal energy in industrial processes is their cost, especially when is compared to energy generation by fossil fuels. This cost delimits the investment payback time for a thermo-solar installation to be feasible. This fact makes crucial the development of methodologies for the integration of solar energy for large-scale industrial applications. This work deals with the thermo-economic evaluation of the heat and power production through a low-temperature flat-plate solar collector system. Also, strategies were developed to increase energy efficiency by evaluating different process integration scenarios. The proposed strategies for energy efficiency combined with renewable energy were applied to an integrated solar thermal energy system into a 1G and 2G (first and second generation) bioethanol process from sugarcane. It was found that to replace the fully process heat and power with low-temperature solar thermal energy, a heat recovery network ? ?? ?????? of 5 °C, a heat duty of 131 kW and a supply temperature of 105 °C are required. All these results lead to a cost of 0.2112 USD/kWh of the integrated system. The power system operates independently by mean an Organic Rankine Cycle and the heating system is supplied by a solar collector network with a cost of 0.0477 USD/kWhele.Guillermo Martínez-RodríguezAmanda L. Fuentes-SilvaJuan-Carlos BaltazarAIDIC Servizi S.r.l.articleChemical engineeringTP155-156Computer engineering. Computer hardwareTK7885-7895ENChemical Engineering Transactions, Vol 88 (2021)
institution DOAJ
collection DOAJ
language EN
topic Chemical engineering
TP155-156
Computer engineering. Computer hardware
TK7885-7895
spellingShingle Chemical engineering
TP155-156
Computer engineering. Computer hardware
TK7885-7895
Guillermo Martínez-Rodríguez
Amanda L. Fuentes-Silva
Juan-Carlos Baltazar
Simultaneous Production of Solar Thermal Heat and Power for Industrial Applications
description Currently most of the energy production is supported by fossil fuels, however, renewable sources contribution on worldwide demand of energy has been in constantly growth. One of the main challenges in the use of solar thermal energy in industrial processes is their cost, especially when is compared to energy generation by fossil fuels. This cost delimits the investment payback time for a thermo-solar installation to be feasible. This fact makes crucial the development of methodologies for the integration of solar energy for large-scale industrial applications. This work deals with the thermo-economic evaluation of the heat and power production through a low-temperature flat-plate solar collector system. Also, strategies were developed to increase energy efficiency by evaluating different process integration scenarios. The proposed strategies for energy efficiency combined with renewable energy were applied to an integrated solar thermal energy system into a 1G and 2G (first and second generation) bioethanol process from sugarcane. It was found that to replace the fully process heat and power with low-temperature solar thermal energy, a heat recovery network ? ?? ?????? of 5 °C, a heat duty of 131 kW and a supply temperature of 105 °C are required. All these results lead to a cost of 0.2112 USD/kWh of the integrated system. The power system operates independently by mean an Organic Rankine Cycle and the heating system is supplied by a solar collector network with a cost of 0.0477 USD/kWhele.
format article
author Guillermo Martínez-Rodríguez
Amanda L. Fuentes-Silva
Juan-Carlos Baltazar
author_facet Guillermo Martínez-Rodríguez
Amanda L. Fuentes-Silva
Juan-Carlos Baltazar
author_sort Guillermo Martínez-Rodríguez
title Simultaneous Production of Solar Thermal Heat and Power for Industrial Applications
title_short Simultaneous Production of Solar Thermal Heat and Power for Industrial Applications
title_full Simultaneous Production of Solar Thermal Heat and Power for Industrial Applications
title_fullStr Simultaneous Production of Solar Thermal Heat and Power for Industrial Applications
title_full_unstemmed Simultaneous Production of Solar Thermal Heat and Power for Industrial Applications
title_sort simultaneous production of solar thermal heat and power for industrial applications
publisher AIDIC Servizi S.r.l.
publishDate 2021
url https://doaj.org/article/4f5368f96e7e453da81d712c9b7e9236
work_keys_str_mv AT guillermomartinezrodriguez simultaneousproductionofsolarthermalheatandpowerforindustrialapplications
AT amandalfuentessilva simultaneousproductionofsolarthermalheatandpowerforindustrialapplications
AT juancarlosbaltazar simultaneousproductionofsolarthermalheatandpowerforindustrialapplications
_version_ 1718426784889831424