FNS allows efficient event-driven spiking neural network simulations based on a neuron model supporting spike latency
Abstract Neural modelling tools are increasingly employed to describe, explain, and predict the human brain’s behavior. Among them, spiking neural networks (SNNs) make possible the simulation of neural activity at the level of single neurons, but their use is often threatened by the resources needed...
Guardado en:
Autores principales: | Gianluca Susi, Pilar Garcés, Emanuele Paracone, Alessandro Cristini, Mario Salerno, Fernando Maestú, Ernesto Pereda |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4f5a8715ec02487fa6b08f7523ceba5d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An artificial spiking quantum neuron
por: Lasse Bjørn Kristensen, et al.
Publicado: (2021) -
Collective and synchronous dynamics of photonic spiking neurons
por: Takahiro Inagaki, et al.
Publicado: (2021) -
Emergent oscillations in networks of stochastic spiking neurons.
por: Edward Wallace, et al.
Publicado: (2011) -
Delay selection by spike-timing-dependent plasticity in recurrent networks of spiking neurons receiving oscillatory inputs.
por: Robert R Kerr, et al.
Publicado: (2013) -
STDP allows fast rate-modulated coding with Poisson-like spike trains.
por: Matthieu Gilson, et al.
Publicado: (2011)