Integration of large-scale data for extraction of integrated Arabidopsis root cell-type specific models

Abstract Plant organs consist of multiple cell types that do not operate in isolation, but communicate with each other to maintain proper functions. Here, we extract models specific to three developmental stages of eight root cell types or tissue layers in Arabidopsis thaliana based on a state-of-th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Michael Scheunemann, Siobhan M. Brady, Zoran Nikoloski
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/4f609e4ad8c341c894b6025ccf06a70d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4f609e4ad8c341c894b6025ccf06a70d
record_format dspace
spelling oai:doaj.org-article:4f609e4ad8c341c894b6025ccf06a70d2021-12-02T15:07:51ZIntegration of large-scale data for extraction of integrated Arabidopsis root cell-type specific models10.1038/s41598-018-26232-82045-2322https://doaj.org/article/4f609e4ad8c341c894b6025ccf06a70d2018-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-26232-8https://doaj.org/toc/2045-2322Abstract Plant organs consist of multiple cell types that do not operate in isolation, but communicate with each other to maintain proper functions. Here, we extract models specific to three developmental stages of eight root cell types or tissue layers in Arabidopsis thaliana based on a state-of-the-art constraint-based modeling approach with all publicly available transcriptomics and metabolomics data from this system to date. We integrate these models into a multi-cell root model which we investigate with respect to network structure, distribution of fluxes, and concordance to transcriptomics and proteomics data. From a methodological point, we show that the coupling of tissue-specific models in a multi-tissue model yields a higher specificity of the interconnected models with respect to network structure and flux distributions. We use the extracted models to predict and investigate the flux of the growth hormone indole-3-actetate and its antagonist, trans-Zeatin, through the root. While some of predictions are in line with experimental evidence, constraints other than those coming from the metabolic level may be necessary to replicate the flow of indole-3-actetate from other simulation studies. Therefore, our work provides the means for data-driven multi-tissue metabolic model extraction of other Arabidopsis organs in the constraint-based modeling framework.Michael ScheunemannSiobhan M. BradyZoran NikoloskiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-15 (2018)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Michael Scheunemann
Siobhan M. Brady
Zoran Nikoloski
Integration of large-scale data for extraction of integrated Arabidopsis root cell-type specific models
description Abstract Plant organs consist of multiple cell types that do not operate in isolation, but communicate with each other to maintain proper functions. Here, we extract models specific to three developmental stages of eight root cell types or tissue layers in Arabidopsis thaliana based on a state-of-the-art constraint-based modeling approach with all publicly available transcriptomics and metabolomics data from this system to date. We integrate these models into a multi-cell root model which we investigate with respect to network structure, distribution of fluxes, and concordance to transcriptomics and proteomics data. From a methodological point, we show that the coupling of tissue-specific models in a multi-tissue model yields a higher specificity of the interconnected models with respect to network structure and flux distributions. We use the extracted models to predict and investigate the flux of the growth hormone indole-3-actetate and its antagonist, trans-Zeatin, through the root. While some of predictions are in line with experimental evidence, constraints other than those coming from the metabolic level may be necessary to replicate the flow of indole-3-actetate from other simulation studies. Therefore, our work provides the means for data-driven multi-tissue metabolic model extraction of other Arabidopsis organs in the constraint-based modeling framework.
format article
author Michael Scheunemann
Siobhan M. Brady
Zoran Nikoloski
author_facet Michael Scheunemann
Siobhan M. Brady
Zoran Nikoloski
author_sort Michael Scheunemann
title Integration of large-scale data for extraction of integrated Arabidopsis root cell-type specific models
title_short Integration of large-scale data for extraction of integrated Arabidopsis root cell-type specific models
title_full Integration of large-scale data for extraction of integrated Arabidopsis root cell-type specific models
title_fullStr Integration of large-scale data for extraction of integrated Arabidopsis root cell-type specific models
title_full_unstemmed Integration of large-scale data for extraction of integrated Arabidopsis root cell-type specific models
title_sort integration of large-scale data for extraction of integrated arabidopsis root cell-type specific models
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/4f609e4ad8c341c894b6025ccf06a70d
work_keys_str_mv AT michaelscheunemann integrationoflargescaledataforextractionofintegratedarabidopsisrootcelltypespecificmodels
AT siobhanmbrady integrationoflargescaledataforextractionofintegratedarabidopsisrootcelltypespecificmodels
AT zorannikoloski integrationoflargescaledataforextractionofintegratedarabidopsisrootcelltypespecificmodels
_version_ 1718388383516983296