Schanuel's Lemma in P-Poor Modules
Modules are a generalization of the vector spaces of linear algebra in which the “scalars” are allowed to be from a ring with identity, rather than a field. In module theory there is a concept about projective module, i.e. a module over ring R in which it is projective module relative to all modules...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Department of Mathematics, UIN Sunan Ampel Surabaya
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4f71c16201ea4830a708d76c3027202f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4f71c16201ea4830a708d76c3027202f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4f71c16201ea4830a708d76c3027202f2021-12-02T13:45:44ZSchanuel's Lemma in P-Poor Modules2527-31592527-316710.15642/mantik.2019.5.2.76-82https://doaj.org/article/4f71c16201ea4830a708d76c3027202f2019-10-01T00:00:00Zhttp://jurnalsaintek.uinsby.ac.id/index.php/mantik/article/view/655https://doaj.org/toc/2527-3159https://doaj.org/toc/2527-3167Modules are a generalization of the vector spaces of linear algebra in which the “scalars” are allowed to be from a ring with identity, rather than a field. In module theory there is a concept about projective module, i.e. a module over ring R in which it is projective module relative to all modules over ring R. Next, there is the fact that every module over ring R is projective module relative to all semisimple modules over ring R. If P is a module over ring R which it’s projective relative only to all semisimple modules over ring R, then P is called p-poor module. In the discussion of the projective module, there is a lemma associated with the equivalence of two modules K1 and K2 provided that there are two projective modules P1 and P2 such that is isomorphic to . That lemma is known as Schanuel’s lemma in projective modules. Because the p-poor module is a special case of the projective module, then in this paper will be discussed about Schanuel’s lemma in p-poor modulesIqbal MaulanaDepartment of Mathematics, UIN Sunan Ampel Surabayaarticleprojective module, semisimple module, p-poor module, schanuel’s lemmaMathematicsQA1-939ENMantik: Jurnal Matematika, Vol 5, Iss 2, Pp 76-82 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
projective module, semisimple module, p-poor module, schanuel’s lemma Mathematics QA1-939 |
spellingShingle |
projective module, semisimple module, p-poor module, schanuel’s lemma Mathematics QA1-939 Iqbal Maulana Schanuel's Lemma in P-Poor Modules |
description |
Modules are a generalization of the vector spaces of linear algebra in which the “scalars” are allowed to be from a ring with identity, rather than a field. In module theory there is a concept about projective module, i.e. a module over ring R in which it is projective module relative to all modules over ring R. Next, there is the fact that every module over ring R is projective module relative to all semisimple modules over ring R. If P is a module over ring R which it’s projective relative only to all semisimple modules over ring R, then P is called p-poor module. In the discussion of the projective module, there is a lemma associated with the equivalence of two modules K1 and K2 provided that there are two projective modules P1 and P2 such that is isomorphic to . That lemma is known as Schanuel’s lemma in projective modules. Because the p-poor module is a special case of the projective module, then in this paper will be discussed about Schanuel’s lemma in p-poor modules |
format |
article |
author |
Iqbal Maulana |
author_facet |
Iqbal Maulana |
author_sort |
Iqbal Maulana |
title |
Schanuel's Lemma in P-Poor Modules |
title_short |
Schanuel's Lemma in P-Poor Modules |
title_full |
Schanuel's Lemma in P-Poor Modules |
title_fullStr |
Schanuel's Lemma in P-Poor Modules |
title_full_unstemmed |
Schanuel's Lemma in P-Poor Modules |
title_sort |
schanuel's lemma in p-poor modules |
publisher |
Department of Mathematics, UIN Sunan Ampel Surabaya |
publishDate |
2019 |
url |
https://doaj.org/article/4f71c16201ea4830a708d76c3027202f |
work_keys_str_mv |
AT iqbalmaulana schanuelslemmainppoormodules |
_version_ |
1718392495487844352 |