Schanuel's Lemma in P-Poor Modules

Modules are a generalization of the vector spaces of linear algebra in which the “scalars” are allowed to be from a ring with identity, rather than a field. In module theory there is a concept about projective module, i.e. a module over ring R in which it is projective module relative to all modules...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Iqbal Maulana
Formato: article
Lenguaje:EN
Publicado: Department of Mathematics, UIN Sunan Ampel Surabaya 2019
Materias:
Acceso en línea:https://doaj.org/article/4f71c16201ea4830a708d76c3027202f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4f71c16201ea4830a708d76c3027202f
record_format dspace
spelling oai:doaj.org-article:4f71c16201ea4830a708d76c3027202f2021-12-02T13:45:44ZSchanuel's Lemma in P-Poor Modules2527-31592527-316710.15642/mantik.2019.5.2.76-82https://doaj.org/article/4f71c16201ea4830a708d76c3027202f2019-10-01T00:00:00Zhttp://jurnalsaintek.uinsby.ac.id/index.php/mantik/article/view/655https://doaj.org/toc/2527-3159https://doaj.org/toc/2527-3167Modules are a generalization of the vector spaces of linear algebra in which the “scalars” are allowed to be from a ring with identity, rather than a field. In module theory there is a concept about projective module, i.e. a module over ring R in which it is projective module relative to all modules over ring R. Next, there is the fact that every module over ring R is projective module relative to all semisimple modules over ring R. If P is a module over ring R which it’s projective relative only to all semisimple modules over ring R, then P is called p-poor module. In the discussion of the projective module, there is a lemma associated with the equivalence of two modules K1 and K2 provided that there are two projective modules P1 and P2 such that is isomorphic to . That lemma is known as Schanuel’s lemma in projective modules. Because the p-poor module is a special case of the projective module, then in this paper will be discussed about Schanuel’s lemma in p-poor modulesIqbal MaulanaDepartment of Mathematics, UIN Sunan Ampel Surabayaarticleprojective module, semisimple module, p-poor module, schanuel’s lemmaMathematicsQA1-939ENMantik: Jurnal Matematika, Vol 5, Iss 2, Pp 76-82 (2019)
institution DOAJ
collection DOAJ
language EN
topic projective module, semisimple module, p-poor module, schanuel’s lemma
Mathematics
QA1-939
spellingShingle projective module, semisimple module, p-poor module, schanuel’s lemma
Mathematics
QA1-939
Iqbal Maulana
Schanuel's Lemma in P-Poor Modules
description Modules are a generalization of the vector spaces of linear algebra in which the “scalars” are allowed to be from a ring with identity, rather than a field. In module theory there is a concept about projective module, i.e. a module over ring R in which it is projective module relative to all modules over ring R. Next, there is the fact that every module over ring R is projective module relative to all semisimple modules over ring R. If P is a module over ring R which it’s projective relative only to all semisimple modules over ring R, then P is called p-poor module. In the discussion of the projective module, there is a lemma associated with the equivalence of two modules K1 and K2 provided that there are two projective modules P1 and P2 such that is isomorphic to . That lemma is known as Schanuel’s lemma in projective modules. Because the p-poor module is a special case of the projective module, then in this paper will be discussed about Schanuel’s lemma in p-poor modules
format article
author Iqbal Maulana
author_facet Iqbal Maulana
author_sort Iqbal Maulana
title Schanuel's Lemma in P-Poor Modules
title_short Schanuel's Lemma in P-Poor Modules
title_full Schanuel's Lemma in P-Poor Modules
title_fullStr Schanuel's Lemma in P-Poor Modules
title_full_unstemmed Schanuel's Lemma in P-Poor Modules
title_sort schanuel's lemma in p-poor modules
publisher Department of Mathematics, UIN Sunan Ampel Surabaya
publishDate 2019
url https://doaj.org/article/4f71c16201ea4830a708d76c3027202f
work_keys_str_mv AT iqbalmaulana schanuelslemmainppoormodules
_version_ 1718392495487844352