A machine-learning-based alloy design platform that enables both forward and inverse predictions for thermo-mechanically controlled processed (TMCP) steel alloys
Abstract Predicting mechanical properties such as yield strength (YS) and ultimate tensile strength (UTS) is an intricate undertaking in practice, notwithstanding a plethora of well-established theoretical and empirical models. A data-driven approach should be a fundamental exercise when making YS/U...
Guardado en:
Autores principales: | Jin-Woong Lee, Chaewon Park, Byung Do Lee, Joonseo Park, Nam Hoon Goo, Kee-Sun Sohn |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4f8b5e5a22314369822c383ea96bedd5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
High entropy alloys as a bold step forward in alloy development
por: D. B. Miracle
Publicado: (2019) -
Fatigue Crack Growth Behavior and Fracture Toughness of EH36 TMCP Steel
por: Qingyan Zhu, et al.
Publicado: (2021) -
Dirty engineering data-driven inverse prediction machine learning model
por: Jin-Woong Lee, et al.
Publicado: (2020) -
Effects of Cu-alloying in minute quantities on the corrosion-induced mechanical degradation behaviors of medium C-based ultrahigh-strength steel in aqueous environments
por: Sung Jin Kim, et al.
Publicado: (2021) -
Friction and Wear Properties of Sintered Cu Alloy Impregnated with Thermo-Reversible Gel-Lubricant
por: Naoki Yamano, et al.
Publicado: (2010)