Dictionary learning in Fourier-transform scanning tunneling spectroscopy

Aperiodic structure imaging suffers limitations when utilizing Fourier analysis. The authors report an algorithm that quantitatively overcomes these limitations based on nonconvex optimization, demonstrated by studying aperiodic structures via the phase sensitive interference in STM images.

Guardado en:
Detalles Bibliográficos
Autores principales: Sky C. Cheung, John Y. Shin, Yenson Lau, Zhengyu Chen, Ju Sun, Yuqian Zhang, Marvin A. Müller, Ilya M. Eremin, John N. Wright, Abhay N. Pasupathy
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/4fac58aeeeba4907ad62d0897dc58f8c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4fac58aeeeba4907ad62d0897dc58f8c
record_format dspace
spelling oai:doaj.org-article:4fac58aeeeba4907ad62d0897dc58f8c2021-12-02T17:31:07ZDictionary learning in Fourier-transform scanning tunneling spectroscopy10.1038/s41467-020-14633-12041-1723https://doaj.org/article/4fac58aeeeba4907ad62d0897dc58f8c2020-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-14633-1https://doaj.org/toc/2041-1723Aperiodic structure imaging suffers limitations when utilizing Fourier analysis. The authors report an algorithm that quantitatively overcomes these limitations based on nonconvex optimization, demonstrated by studying aperiodic structures via the phase sensitive interference in STM images.Sky C. CheungJohn Y. ShinYenson LauZhengyu ChenJu SunYuqian ZhangMarvin A. MüllerIlya M. EreminJohn N. WrightAbhay N. PasupathyNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Sky C. Cheung
John Y. Shin
Yenson Lau
Zhengyu Chen
Ju Sun
Yuqian Zhang
Marvin A. Müller
Ilya M. Eremin
John N. Wright
Abhay N. Pasupathy
Dictionary learning in Fourier-transform scanning tunneling spectroscopy
description Aperiodic structure imaging suffers limitations when utilizing Fourier analysis. The authors report an algorithm that quantitatively overcomes these limitations based on nonconvex optimization, demonstrated by studying aperiodic structures via the phase sensitive interference in STM images.
format article
author Sky C. Cheung
John Y. Shin
Yenson Lau
Zhengyu Chen
Ju Sun
Yuqian Zhang
Marvin A. Müller
Ilya M. Eremin
John N. Wright
Abhay N. Pasupathy
author_facet Sky C. Cheung
John Y. Shin
Yenson Lau
Zhengyu Chen
Ju Sun
Yuqian Zhang
Marvin A. Müller
Ilya M. Eremin
John N. Wright
Abhay N. Pasupathy
author_sort Sky C. Cheung
title Dictionary learning in Fourier-transform scanning tunneling spectroscopy
title_short Dictionary learning in Fourier-transform scanning tunneling spectroscopy
title_full Dictionary learning in Fourier-transform scanning tunneling spectroscopy
title_fullStr Dictionary learning in Fourier-transform scanning tunneling spectroscopy
title_full_unstemmed Dictionary learning in Fourier-transform scanning tunneling spectroscopy
title_sort dictionary learning in fourier-transform scanning tunneling spectroscopy
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/4fac58aeeeba4907ad62d0897dc58f8c
work_keys_str_mv AT skyccheung dictionarylearninginfouriertransformscanningtunnelingspectroscopy
AT johnyshin dictionarylearninginfouriertransformscanningtunnelingspectroscopy
AT yensonlau dictionarylearninginfouriertransformscanningtunnelingspectroscopy
AT zhengyuchen dictionarylearninginfouriertransformscanningtunnelingspectroscopy
AT jusun dictionarylearninginfouriertransformscanningtunnelingspectroscopy
AT yuqianzhang dictionarylearninginfouriertransformscanningtunnelingspectroscopy
AT marvinamuller dictionarylearninginfouriertransformscanningtunnelingspectroscopy
AT ilyameremin dictionarylearninginfouriertransformscanningtunnelingspectroscopy
AT johnnwright dictionarylearninginfouriertransformscanningtunnelingspectroscopy
AT abhaynpasupathy dictionarylearninginfouriertransformscanningtunnelingspectroscopy
_version_ 1718380671027642368