Multi-feature fusion framework for sarcasm identification on twitter data: A machine learning based approach.
Sarcasm is the main reason behind the faulty classification of tweets. It brings a challenge in natural language processing (NLP) as it hampers the method of finding people's actual sentiment. Various feature engineering techniques are being investigated for the automatic detection of sarcasm....
Enregistré dans:
| Auteurs principaux: | Christopher Ifeanyi Eke, Azah Anir Norman, Liyana Shuib |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Public Library of Science (PLoS)
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/4fad5568908a48ac807c253124429372 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Hyperbolic Feature-based Sarcasm Detection in Telugu Conversation Sentences
par: Bharti Santosh Kumar, et autres
Publié: (2020) -
The twittering machine : (La máquina de trinar) /
par: Seymour, Richard
Publié: (2020) -
Breast Cancer Detection via Global and Local Features using Digital Histology Images
par: Ghulam Murtaza, et autres
Publié: (2021) -
Controversy over the Concept of Irony (=Al-Mophareqeh) from Sarcasm to Contradiction; A Linguistic and Semantic Approach
par: Ali Andalib, et autres
Publié: (2019) -
KK-DBP: A Multi-Feature Fusion Method for DNA-Binding Protein Identification Based on Random Forest
par: Yuran Jia, et autres
Publié: (2021)