The expression of delta opioid receptor mRNA in adult male zebra finches (Taenopygia guttata).

The endogenous opioid system is evolutionarily conserved across reptiles, birds and mammals and is known to modulate varied brain functions such as learning, memory, cognition and reward. To date, most of the behavioral and anatomical studies in songbirds have mainly focused on μ-opioid receptors (O...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pooja Parishar, Neha Sehgal, Soumya Iyengar
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/4fb9ae26e9c74dfa896d8b7862486745
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4fb9ae26e9c74dfa896d8b7862486745
record_format dspace
spelling oai:doaj.org-article:4fb9ae26e9c74dfa896d8b78624867452021-12-02T20:14:52ZThe expression of delta opioid receptor mRNA in adult male zebra finches (Taenopygia guttata).1932-620310.1371/journal.pone.0256599https://doaj.org/article/4fb9ae26e9c74dfa896d8b78624867452021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0256599https://doaj.org/toc/1932-6203The endogenous opioid system is evolutionarily conserved across reptiles, birds and mammals and is known to modulate varied brain functions such as learning, memory, cognition and reward. To date, most of the behavioral and anatomical studies in songbirds have mainly focused on μ-opioid receptors (ORs). Expression patterns of δ-ORs in zebra finches, a well-studied species of songbird have not yet been reported, possibly due to the high sequence similarity amongst different opioid receptors. In the present study, a specific riboprobe against the δ-OR mRNA was used to perform fluorescence in situ hybridization (FISH) on sections from the male zebra finch brain. We found that δ-OR mRNA was expressed in different parts of the pallium, basal ganglia, cerebellum and the hippocampus. Amongst the song control and auditory nuclei, HVC (abbreviation used as a formal name) and NIf (nucleus interfacialis nidopallii) strongly express δ-OR mRNA and stand out from the surrounding nidopallium. Whereas the expression of δ-OR mRNA is moderate in LMAN (lateral magnocellular nucleus of the anterior nidopallium), it is low in the MSt (medial striatum), Area X, DLM (dorsolateral nucleus of the medial thalamus), RA (robust nucleus of the arcopallium) of the song control circuit and Field L, Ov (nucleus ovoidalis) and MLd (nucleus mesencephalicus lateralis, pars dorsalis) of the auditory pathway. Our results suggest that δ-ORs may be involved in modulating singing, song learning as well as spatial learning in zebra finches.Pooja ParisharNeha SehgalSoumya IyengarPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 8, p e0256599 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Pooja Parishar
Neha Sehgal
Soumya Iyengar
The expression of delta opioid receptor mRNA in adult male zebra finches (Taenopygia guttata).
description The endogenous opioid system is evolutionarily conserved across reptiles, birds and mammals and is known to modulate varied brain functions such as learning, memory, cognition and reward. To date, most of the behavioral and anatomical studies in songbirds have mainly focused on μ-opioid receptors (ORs). Expression patterns of δ-ORs in zebra finches, a well-studied species of songbird have not yet been reported, possibly due to the high sequence similarity amongst different opioid receptors. In the present study, a specific riboprobe against the δ-OR mRNA was used to perform fluorescence in situ hybridization (FISH) on sections from the male zebra finch brain. We found that δ-OR mRNA was expressed in different parts of the pallium, basal ganglia, cerebellum and the hippocampus. Amongst the song control and auditory nuclei, HVC (abbreviation used as a formal name) and NIf (nucleus interfacialis nidopallii) strongly express δ-OR mRNA and stand out from the surrounding nidopallium. Whereas the expression of δ-OR mRNA is moderate in LMAN (lateral magnocellular nucleus of the anterior nidopallium), it is low in the MSt (medial striatum), Area X, DLM (dorsolateral nucleus of the medial thalamus), RA (robust nucleus of the arcopallium) of the song control circuit and Field L, Ov (nucleus ovoidalis) and MLd (nucleus mesencephalicus lateralis, pars dorsalis) of the auditory pathway. Our results suggest that δ-ORs may be involved in modulating singing, song learning as well as spatial learning in zebra finches.
format article
author Pooja Parishar
Neha Sehgal
Soumya Iyengar
author_facet Pooja Parishar
Neha Sehgal
Soumya Iyengar
author_sort Pooja Parishar
title The expression of delta opioid receptor mRNA in adult male zebra finches (Taenopygia guttata).
title_short The expression of delta opioid receptor mRNA in adult male zebra finches (Taenopygia guttata).
title_full The expression of delta opioid receptor mRNA in adult male zebra finches (Taenopygia guttata).
title_fullStr The expression of delta opioid receptor mRNA in adult male zebra finches (Taenopygia guttata).
title_full_unstemmed The expression of delta opioid receptor mRNA in adult male zebra finches (Taenopygia guttata).
title_sort expression of delta opioid receptor mrna in adult male zebra finches (taenopygia guttata).
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/4fb9ae26e9c74dfa896d8b7862486745
work_keys_str_mv AT poojaparishar theexpressionofdeltaopioidreceptormrnainadultmalezebrafinchestaenopygiaguttata
AT nehasehgal theexpressionofdeltaopioidreceptormrnainadultmalezebrafinchestaenopygiaguttata
AT soumyaiyengar theexpressionofdeltaopioidreceptormrnainadultmalezebrafinchestaenopygiaguttata
AT poojaparishar expressionofdeltaopioidreceptormrnainadultmalezebrafinchestaenopygiaguttata
AT nehasehgal expressionofdeltaopioidreceptormrnainadultmalezebrafinchestaenopygiaguttata
AT soumyaiyengar expressionofdeltaopioidreceptormrnainadultmalezebrafinchestaenopygiaguttata
_version_ 1718374643696402432